
No-Match Attacks and Robust Partnering
Definitions – Defining Trivial Attacks for

Security Protocols is Not Trivial
Yong Li

Huawei Technologies Düsseldorf

Germany

yong.li1@huawei.com

Sven Schäge

Ruhr-Universität Bochum

Germany

sven.schaege@rub.de

ABSTRACT
An essential cornerstone of the definition of security for key ex-

change protocols is the notion of partnering. The de-facto standard

definition of partnering is that of (partial) matching conversations

(MC), which essentially states that two processes are partnered if

every message sent by the first is actually received by the second

and vice versa. We show that proving security under MC-based def-

initions is error-prone. To this end, we introduce no-match attacks,
a new class of attacks that renders many existing security proofs

invalid. We show that no-match attacks are often hard to avoid in

MC-based security definitions without a) modifications of the orig-

inal protocol or b) resorting to the use of cryptographic primitives

with special properties. Finally, we show several ways to thwart

no-match attacks. Most notably and as one of our major contribu-

tions, we provide a conceptually new definition of partnering that

circumvents the problems of a MC-based partnering notion while

preserving all its advantages. Our new notion of partnering not only

makes security definitions for key exchange model practice much

more closely. In contrast to many other security notions of key ex-

change it also adheres to the high standards of good cryptographic

definitions: it is general, supports cryptographic intuition, allows

for efficient falsification, and provides a fundamental composition

property that MC-based notions lack.

CCS CONCEPTS
• Security and privacy → Security requirements; Security
protocols;

KEYWORDS
protocols, definitions, partnering, no-match, original key

1 INTRODUCTION
Authenticated key exchange (AKE) protocols are among the most

important building blocks of secure network protocols. Intuitively,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’17, October 30-November 3, 2017, Dallas, TX, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00

https://doi.org/10.1145/3133956.3134006

they allow a party A (Alice) to authenticate a communication part-

ner B (Bob) and securely establish a common session key with B
(and vice versa). Most security models for AKE try to model that

an adversary can observe or initiate several executions of the pro-

tocol at the same party. Usually, each party is therefore modeled as

having several oracles – processes that all have access to the same

long-term key of that party but otherwise independently execute

the protocol. The combination of two oracles that communicate

with each other according to the protocol specification defines a

(protocol) session.
1

Informally, the basic requirements for security are that if an ora-

cle of A communicates with one of B, no adversary can distinguish

the session key computed by A’s oracle from a random value with-

out corrupting A’s or B’s secret values (i.e. their long-term keys,

secret session states, or directly their session keys). This property is

commonly referred to as key indistinguishability while (in this con-

text) A’s oracle is usually termed the Test-oracle – technically, the

adversary sends a special Test-query to Alice’s oracle and receives

back the real session key of that oracle or a random key.

In the security game, the adversary can choose the Test-oracle
among the set of all oracles that have computed a session key so-far

while having access to generous queries that grant her access to the

secret states of oracles of unrelated sessions. The important overall

rationale behind the security model is that in a concurrent setting,

leakage of session-dependent parameters should not compromise

the security of unrelated sessions.

For the definition of security, the precise specification of what

defines related – or more commonly called partnered – oracles is of

utmost importance (and all our examples below provide convincing

evidence for this). This is because all security models for key ex-

change allow the adversary to request the session keys of unrelated

oracles (i.e. not partnered to the Test-oracle) only, usually via a

so-called Reveal query. The rationale behind this restriction is that

oracles partnered to the Test-oracle are assumed to share the same

session key. And of course, the revealed session key of the partner

oracle could directly be used to break key indistinguishability. This

makes the notion of partnering an essential tool for defining trivial

attacks in key exchange protocols.

In general, the adversary may also ask for the secret long-term

keys of all parties different from A and B by sending a Corrupt-
query to one of their oracles. However, in stronger formalizations

of security for key exchange protocols [15, 29, 35–37], for example

1
Note that at this point wemake use of the terminology of the original Bellare-Rogaway

model [6]. Canetti-Krawczyk like models use a different terminology [17], in particular

they use the term session to refer what BR-like models call oracle.

Session F3: Crypto Pitfalls CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1343

https://doi.org/10.1145/3133956.3134006

when also modeling key compromise impersonation (KCI) attacks or

perfect forward secrecy (PFS), a Corrupt-query may also be queried

to the oracles of A and B (even to the Test-oracle).
Finally, some security models like [37] also allow the adversary

to obtain the ephemeral secret keys that are computed by the or-

acles in the protocol run. This is usually realized via a so-called

EphemeralKey-query (or a RevealState-query like in [31]).

Existing Definitions of Partnering and Session Identifiers.
The de-facto standard definition for partnering is based on the

notion of (partial) matching conversations. Essentially, two oracles

have matching conversations if every message
2
that has been sent

by the first oracle has actually been received by the second (with-

out any modifications on transit) and vice versa. Matching con-

versations are explicitly used in many widespread security models

like the original Bellare-Rogaway model [6], the extended Canetti-

Krawczyk eCK model by LaMacchia, Lauter, and Mityagin [37], the

CK+ model that was introduced by Krawczyk in the analysis of

HMQV [35], and the recent security model for authenticated and

confidential channel establishment (ACCE) by Jager, Kohlar, Schäge,

and Schwenk [29].
3 Partial matching conversations are defined in

the same way as matching conversations except that they do not

cover the entire message transcript but only a part of it. Which mes-

sages exactly belong to the relevant partial matching conversation

is highly protocol-dependent. Using partial matching conversations

as opposed to plain matching conversations has several conceptual

disadvantages, the most important being its lack of general applica-
bility. In particular, while matching conversations can be used to

formalize trivial attacks for any key exchange protocol, the defini-

tion of partial matching conversations is protocol-specific. Strictly

speaking, this makes the entire security definition protocol-specific

as well and comparisons among security protocols much harder.

Another common partnering concept relies on so-called session
identifiers. Essentially, it requires that each oracle is assigned with

a string that is referred to as its session identifier. Moreover, it

postulates that oracles are partnered if and only if they share the

same session identifier. Session identifiers can be based on (partial)

matching conversations (and often are). To this end, one can define

that the session identifier of an oracle consists of the list of all

messages sent and received by that oracle. In this way, two ora-

cles have the same session identifier (are partnered) iff they have

matching conversations. However, session identifiers are much

more general as they can also include, besides (partial) transcripts,

other values including (secret) state values held by the oracles and

parties. Protocol analyses that use this concept need to first define

the session identifier concretely. This definition is usually highly

protocol-specific.

In the literature, one alternative to session identifiers based on

protocol information is to use session identifiers that are generated

prior to the protocol execution, so-called external session iden-

tifiers
4
. Protocols for computing such session identifiers usually

2
To achieve a general definition that is applicable to any key exchange protocol,

messages are always interpreted as binary strings in the natural way.

3
We remark that although the concrete technical formalizations of matching conver-

sations given in these works may differ, they essentially model the same property.

4
We note that the terminology is ambiguous. In fact some papers use ’external’ session

identifiers just as place-holders for any fitting definition of session identifiers. In these

context, external session identifiers do not have to be pre-specified. The advantage

consist of an exchange of random nonces among the parties, as

for example in [3]. However, despite being general this definition

is problematic in many scenarios. Most importantly, it does not

model cryptographic practice; for efficiency reasons key exchange

protocols usually do not allow for an extra phase that is used for

the sole purpose of deriving session identifiers.

Finally, there is another way of formalizing that two oracles are

partneredwhichwas introduced by Bellare and Rogaway in 1995 [7].

It simply assumes the existence of a so-called partnering function.

However, as argued by Bellare, Pointcheval, and Rogaway in [5],

the definition allows for unintuitive partnering functions. There-

fore partnering functions are not widespread in the cryptographic

literature.

In the literature, one can also find other partnering definitions

which, however, are not widely used. One example is a definition

proposed by Kobara, Shin, Strefler [33] in 2009. Essentially, the

definition requires that two oracles are partnered if they have the

same key and no other (third) oracle shares that same key. This

definition has the highly counter-intuitive
5
feature that whether

two oracles are partnered with each other is dependent on the

existence or non-existence of some other oracle.

Desirable Properties of Partnering Definitions. Some of the

existing partnering concepts have grave conceptual disadvantages.

Essentially, they do not provide an appropriate level of abstraction

that is suitable for a cryptographic analysis as we would like to

argue in more detail.

In particular, most of the concepts are too general and require

protocol-dependent concretizations (partial matching conversa-

tions, session identifiers, partnering functions). These concretiza-

tions often differ considerably. This has several drawbacks.

1) In key exchange protocols all definitions of partnering are

used to define the same intuitive security property, key indistin-

guishability. This is different from for example security definitions

of public key encryption where chosen ciphertext security, for ex-

ample, refers to cryptographic systems which offer considerably

more security guarantees than chosen plaintext secure ones. In

light of this, it seems rather unnatural that key exchange protocols

may have different security definitions although they aim to meet

the same security requirements.

2) One of the most crucial problems of partnering definitions

that need to be concretized protocol-wisely is that for each con-

cretization the actual overall security of the protocol may vary

greatly (although the rest of the security model is kept fixed). This

is because the concrete formulation of partnering has a critical

effect on the actual security guarantees provided by a provably

secure protocol. For example, one can easily propose partnering

definitions under which practically weak or even insecure proto-

cols admit a proof of security. It is highly counter-intuitive and

unsound to deem such a protocol as secure as protocols under tra-

ditional, strong notions of partnering. In Section 4.3 we provide a

brief example.

is that one can refer to protocols in general and independent of their specification of

session identifiers. We note that, typically, these papers use matching conversations

as the default instantiations of session identifiers in practical settings.

5
Support of cryptographic intuition is a highly valued feature of definitions in cryp-

tography as [5] showed when deciding against the use of the notion in [7].

Session F3: Crypto Pitfalls CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1344

3) Fixing the security definition (and in particular the partnering

definition) allows to treat key exchange protocols in an abstract

way. In this way they can be used as generic building blocks (in

a black-box way) in more complex protocols and give rise to new

constructions. Protocol-specific definitions of partnering violate

this approach.

4) Moreover, we would like to stress that it is problematic to not

specify a single concrete partnering definition at all in the security

model. In particular, there are several theoretical and conceptual dis-

advantages to simply requiring that there exists some appropriate,

concrete partnering definition. Crucially, such an approach does

not allow for simple falsification of the protocol’s security. More

concretely, an attack on a protocol does only violate a security proof

if it actually holds for all partnering definitions, because the proof

only states that there exists an appropriate partnering notion. Such

an approach is highly impractical and violates cryptographic intu-

ition. A security proof should always fix all circumstances it holds

under – ultimately to allow for a simple verification of when it does

not hold. Also it shifts the amount of work from the security proof

to the attacker. In classical models it is rather simple to describe

a successful attack because an attack only has to violate a single

concrete security definition. For unspecified partnering definitions,

an attack has to show (or rather to prove) that it is valid against

all possible (even highly unreasonable) definitions of partnering.

Showing this is usually much more difficult than specifying an

attack against a fixed definition. We stress that similar problems

still occur also when the security definition is slightly more con-

crete, for example if it requires that there exists a suitable partial

matching transcript. Similar to before, to rule out the security of

a protocol one has to show it for all possible definitions. Finally,

simply requiring that an appropriate partnering definition exists

in essence amounts to introducing a primitive-specific additional

assumption (that one would rather prefer to avoid). In contrast to

classical security reduction this is not an assumption that helps

to deduce the security of a cryptographic scheme but rather an

assumption to argue on the realizability of the security notion. We

do not know anything about the plausibility of such an assumption

in general.

5) There are even more (and similarly important) benefits when

settling on a fixed partnering definition than the comparability

of protocols: importantly, it allows for better comparability of se-

curity models. With a fixed partnering definition we may much

more easily deduce implications between different security models.

This allows to reveal fundamental connections between important

cryptographic models and pave the way for improved security

definitions.

6) Finally, defining and relying for each new protocol on a special-

ized security definition (that is specifically crafted for that protocol)

is arguably more error-prone than using a general definition that

is verified once and for all.

Considering these arguments, it is worthwhile to restrict the

class of concrete partnering definitions to allow for a broad compa-

rability of protocols and models among each other and for simple

falsification. In fact these features are the prime benefits of matching

conversations and the reason for its widespread adoption. How-

ever, on the other hand matching conversations are too restrictive.

In particular, they deem protocols insecure which cryptographic

intuition would not consider problematic at all. More concretely,

(partial) matching conversations suffer from a lack of the following

properties.

7) A partnering definition as part of a cryptographic security

definition should be abstract and applicable to all ‘reasonable’ in-

stantiations of the considered primitive/protocol class. A concrete

partnering definition that is based on a specific partial transcript of

some protocol however can in general not be used for the analysis

of other protocols.

8) An important property a partnering definition (or more gener-

ally a security model) should provide, is a basic form of composabil-

ity. More precisely, it should for example support cryptographers’

best practice to first extract the cryptographic core of real-world

protocols and then analyze that core in a formal model. Importantly,

there should be no obstacle for the obtained results to be meaning-

ful for the real-world implementation. Matching conversations do

not support this approach as the validity of any result is formally

dependent on the existence of unrelated administrative information

(as detailed in Section 4.5 and Appendix C).

9) A partnering definition should support cryptographic intu-

ition. In particular, it is highly counter-intuitive that the overall

security of some cryptographic scheme is formally violated if en-

tirely unrelated (random) messages are added to the message flow

of a secure protocol.

Taking stock, matching conversations excel in providing the

first set of desirable properties, 1)–6), while failing to support the

second, 7)–9). In contrast, the more general notions of partnering

like partial matching conversations, general session identifiers, and

partnering functions may be concretized such that they provide

the second set of properties, 7)–9). However, they usually do not

provide the features of the first set of properties, 1)–6).

1.1 Contribution
We provide several contributions. First, we present a new class of

attacks on key exchange protocols called no-match attacks. In a no-

match attack the attacker slightly modifies the message exchanged

between two oracles on transit such that the keys computed by

these oracles remain equal. However, the decisive point is that due

to the introduced modifications the oracles are not partnered. In all

existing security models, this can be exploited to break the security

by simply revealing the session key of one of the oracles to answer

the Test-query for the other. We use no-match attacks to show that

providing sound security analyses for key exchange protocols un-

der MC-based definitions of partnering is difficult and error-prone.

In particular, we show for a diverse collection of security protocols,

that the corresponding security proofs are flawed. To this end, we

present detailed descriptions of successful adversaries. The set of

protocols that we consider is not complete and we believe many

more security proofs to be flawed or at least incomplete in the sense

that they do not formally rule out no-match attacks (although the

protocol actually protects against them). We present three ways

to thwart no-match attacks. Our solutions vary in the additional

complexity added to the protocol and the additional theoretical

assumptions necessary in the security proof as compared to the

original protocol. This allows to choose the necessary modifications

to the protocol (for making it provably secure) in a way that suits

Session F3: Crypto Pitfalls CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1345

the application it is used in. As our main solution and as one of

our major contributions, we present a new definition of partnering

that precisely renders no-match attacks invalid. We provide several

arguments for why our notion is better than previous notions of

partnering. First, our definition can generically be plugged into

all existing security definitions. Second, it does not depend on the

analyzed protocol and thus is very general. In fact, it is independent
of the concrete messages that are exchanged between the parties.

Third, it can be verified very easily, i.e. whether two oracles are

partnered is decided solely by checking a single cryptographic

value. Forth, it supports efficient falsification making it possible to

decide whether for a protocol we cannot provide a proof of security

at all. Fifth, and in contrast to some of the existing definitions it

formalizes and supports cryptographic intuition. Finally, we stress

that our new definition of partnering supports the form of com-

posability that the MC-based notions provably lack and even a

slightly stronger form of it. In particular, protocols proven secure

under our definitions remain secure even if additional messages

are exchanged that do depend on the public values of the protocol.

As our last result, we show how to deal with no-match attacks in

security models that also, besides key indistinguishability, formal-

ize explicit authentication. In particular we provide a new notion

of explicit authentication that similar to before renders no-match

attacks useless. Advantageously, this new definition again supports

the basic from of composability that MC-based notions lack. As a

stepping stone and of independent interest, we essentially decouple

authentication from the used partnering definition.

1.2 Related Work
The importance of precise security definitions for rigorous cryp-

tographic analysis is well-recognized by cryptographers [25, 32]

and can hardly be overestimated. Ultimately, one first needs to pro-

vide a precise definition of security before constructing a scheme

that provably achieves it. No-match attacks show that it is hard to

precisely define trivial attacks for key exchange protocols. Similar

observations have been made for other primitives before. Most

notably, Bellare, Hofheinz, and Kiltz showed that for public key

encryption schemes there exists several non-equivalent variants for

formalizing that the challenge ciphertext may not be asked to the

decryption oracle [4]. As a result of their analysis, they isolate the

strongest of the existing definitions and recommend it for future

usage. Our results are similar in the sense that they also analyze dif-

ferent ways to define trivial attacks for an important cryptographic

primitive, but they go much further. We do not only show that

the existing ways of formalizing trivial attacks are not equivalent.

We present new, subtle attacks that reveal flaws in formal security

proofs which have been overlooked by cryptographers for many

years. Moreover, we show that the most popular definition of trivial

attacks – via matching conversations – is actually unsuited for

cryptographic practice. Finally, we provide a new definition that

solves many of the problems of the existing definitions (lack of com-

posability, unrealistic no-match attacks) while keeping important

advantages.

There exist few papers that consider attacks that are related to

the definition of partnering in key exchange protocols. Most note-

worthy, in 2005, Choo and Hitchcock [18] presented an attack on

the Jeong-Katz-Lee protocol TS2 [30] and on the three-party proto-

col 3PKD of Bellare and Rogaway [7]. In retrospect and using our

terminology, we can interpret the attack on the 3PKD protocol as a

simple no-match attack (without advice). In 2007, Bresson, Manulis,

and Schwenk [13] showed that under the original security defini-

tion for group key exchange by Bresson, Chevassut, Pointcheval,

and Quisquater [12] there exist protocols where the adversary may

impersonate users or where two partnered oracles accept with a dif-

ferent key. However, the authors explicitly state that these problems

only appear in the group setting with at least three parties. The

authors of [29] were pointed to a subtle problem with the defintion

of partnering that, in retrospect, can be interpreted as a no-match

attack (see the most recent full version [40]). This issue was also

observed by [16]. We stress that the above works only consider

attacks on single protocols. In contrast, our work provides a very

general attack strategy that can be applied on a variety of proto-

cols. We also introduce no-match attacks with advice showing that

no-match attacks can be much harder to avoid (and more subtle)

when the adversary is granted access to strong queries, like in KCI

attacks or when modeling forward secrecy.

In 2011, Cremers, provided an in-depth analysis and comparison

of three of the most wide-spread security models, the CK, the CK+

(or HMQV), and the eCK model [19]. As a result, he was able to

show that these models are formally and practically incompara-

ble to each other, meaning that for every pair of models one can

find protocols which are secure in the first model but not in the

second (and vice versa). Crucially, he exploited that the security

models have different ways to formalize partnering and, in particu-

lar, different ways of defining security for non-symmetric protocols.

Moreover, Cremers showed that the proofs of several protocols

are not complete. In particular, he showed that in some models

protocols may have computed distinct keys although they formally

are partnered.
6
Our no-match attacks are rather orthogonal to this,

where oracles have the same key but do not have matching con-

versations. This not only makes proofs incomplete but also allows

us to describe concrete and often very subtle (no-match) attacks.

However, there is also a more fundamental difference between our

work and that of Cremers. Like some works before, Cremers focuses

on and suggests to use definitions of partnering that guarantee that

two oracles have computed the same key iff they are partnered.

Jumping ahead we show that this is actually not an appropriate way

to deal with no-match attacks and therefore we propose a distinct

and conceptually new definition of partnering. Crucially, and in

contrast to all other works that we are aware of, our definition of

partnering does not only require that two (or more) oracles have

computed the same key but that this key must additionally be equal

to a special (ideal) key which only depends on the two oracles but

not the attacker. Moreover, our results are not restricted to certain

security models but reveal a general problem (and possible solu-

tions to it) when defining security in the realm of key exchange

and authentication protocols.

6
Intuitively, one can view this as a violation of correctness (in the presence of an

active attacker). However, since both oracles have computed distinct keys they will

not be able to exchange authenticated messages with that key. This will already

make the parties aware of a problem that has occurred in the key derivation phase.

(Arguably, this argumentation is central to the concept of implicit authentication.) Our

no-match attacks in contrast will make an attacker successfully break the secrecy of

the communication without any indication of its presence to the oracles.

Session F3: Crypto Pitfalls CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1346

The authors of [33] also introduce a new partnering definition

that aims to fix the problem that occurs “if the partnering definition

takes information into account that is irrelevant to the computation

of the session key”. This notion is incomparable to ours and all other

existing notions and, as sketched before, very counter-intuitive. In

essence, it defines that the fact that two oracles are partnered (or

not) depends on the (non-)existence of another oracle with some

related properties. (All other notions of partnering concentrate on a

relation between only two oracles.) More concretely, the definition

in [33] states that two oracles are partnered if they have the same

key and no other oracle has that key. We also remark that in general

concentrating only on “irrelevant” information is not sufficient.

Jumping slightly ahead, our results show that no-match attacks

are also possible by modifying messages that are crucial to the

computation of the message (also see Remark 1).

1.3 Open Problems
In this paper, we provide a collection of (flawed) security analyses

that show that the corresponding protocols fail to meet their stated

security claims. We stress that our list is by no means complete. We

remark that we concentrate on protocols that are proven secure in

widespread security models. Given the popular use of session iden-

tifiers based on matching conversations and the wide popularity of

the original BR, CK+, eCK, and ACCE model, we believe that many

other security proofs are vulnerable to no-match attacks. Further-

more, it remains an interesting open problem to more practically

exploit a no-match attack in a real-world protocol but we have

little hope in this regard. Finally, in Section 7 we consider potential

future relaxations of our new security notion and conceptual and

technical obstacles towards them.

1.4 A Note on Formalism
To focus on the subtle

7
core problem surrounding no-match attacks

we try to keep our results as light on key exchange formalism as

possible. More rigorously, technical definitions can be found in

the cited security models. A very brief overview on key exchange

models is given in Appendix A. We stress that in several ways our

results do not rely on concrete formalizations of security definitions.

For example, for our purposes it does not matter if we use the

definition of matching conversations given [6], in [29], or the one

given implicitly in [35]. For our purposes these definitions can

be regarded as equivalent, all essentially trying to capture that

everything that is sent by one oracle is actually received by the

second and vice versa. It is this conceptual core of the definition

our result relies on, not a concrete formalism of it. We therefore

sometimes refrain from providing a concrete definition in this paper

and basing our reasoning on it but refer to the literature for concrete

formalizations.

1.5 Overview
We start with a gentle introduction to no-match attacks in Section 2.

In Section 3, we present a diverse list of no-match attacks against

existing security protocols. These attacks reveal subtle flaws in the

security proofs of the protocols. A detailed, step-by-step example

7
Recall that despite being peer-reviewed and public, several existing protocols are still

susceptible to no-match attacks.

of such an attack can be found in Appendix B. Altogether we pro-

vide three solutions to deal with no-match attacks. In Section 4, we

present our first solution and main contribution: a new partnering

notion that does not require any modification of the protocol im-

plementation at all to deal with no-match attacks. We extend our

results in Section 5 to provide a new definition of explicit authenti-

cation for key exchange that helps to deal with no-match attacks

in security models with explicit authentication. In Section 6, we

show how to use our new security notion as a more general tool to

strengthen existing security definitions. Finally, Section 7 contains

an outlook on how our new security notion might be extended

further. Additionally, we present several arguments why such an

extension may indeed be rather difficult to achieve when it adheres

to the high standards that we require (and which are so common

in most other fields of cryptography). In Appendix C we show in a

formal way that security models based on matching conversations

cannot be composed with arbitrary random messages even if those

messages are independent of the protocol. Next we show that, in

contrast, our new notion of partnering does provably fulfill this

and even a stronger form of composition (where the additional mes-

sages may even be generated from the public values of the protocol).

Finally, in Appendix E we describe two alternative approaches (and

their limitations) to deal with no-match attacks in existing security

models. These solutions either rely on a careful instantiation of the

primitives or on a (slight) modification of the protocol layout.

2 NO-MATCH ATTACKS
In this section we introduce no-match attacks. To precisely capture

no-match attacks, we first introduce the notion of original keys.
It will also be central to the new partnering definitions that we

provide later on.

Definition 2.1 (Original Key). The original key of a pair of com-

municating oracles is the session key that is computed by each of

the oracles in a protocol run which is executed in the presence of

an entirely passive adversary (which only relays the messages sent

by the oracles).

We remark that the original key of two oracles depends on the

(secret) randomness available to the two oracles. We are now able

to introduce no-match attacks.

Definition 2.2 (No-Match Attack). We say, an adversary has suc-

cessfully launched a no-match attack if there is a pair of oracles

such that each of them has computed their original key but the two

oracles are not partnered (do not have the same session identifier).

We clarify that in the above definition we essentially consider

two runs of the protocol although under different conditions. The

first one is only imaginary and used to define the original key of

the two oracles while assuming the adversary remains passive. In

contrast, the real second run assumes an active adversary. We stress

that in both runs, the oracles use the same randomness.

We also remark that defining no-match attacks relative to the

original key is crucial (also see Figure 1). In particular, it is not

sufficient that an adversary launches an attack that makes the two

oracles accept merely with the same key, as some papers have

suggested before [5]. For a no-match attack this must additionally

be the original key. This distinction will be important in Section 4

Session F3: Crypto Pitfalls CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1347

(and in particular in Section 4.3) when we propose several solutions

to thwart protocols against no-match attacks. It is this (subtle)

feature that solves many of the problems of previous definitions.

Finally, we emphasize that we have defined no-match attacks

with a general partnering definition. Subsequently, we concentrate

on partnering definitions based on (partial) matching conversations

(including session identifiers based on matching conversations).

2.1 Warm-Up: No-Match Attacks without
Advice

We start with an instructive example of a no-match attack. Imagine a

key exchange protocol, where in the last protocol step, (an oracle of)

Alice sends a message together with a signature on that message to

(an oracle of) Bob. As a running example used here and later on we

may more concretely use signed Diffie-Hellman (i.e. the basic Diffie-

Hellman key exchange where each DH share is accompanied by a

signature over that share and the identities of the communication

parties). Recall that the standard security notion of digital signatures

requires the adversary to output a forgery on a message that has not

been queried before [27]. Also, assume that Alice uses a probabilistic

signing algorithm. Now let us describe an attackerA that cannot be

reduced to the security of the digital signature scheme. The attack

proceeds in three steps:

(1) A intercepts Alice’s last message on transit.

(2) A computes a new signature on the last message, for ex-

ample by first brute-forcing Alice’s secret key and then re-

applying the signature algorithm.

(3) Finally, A sends the message and the new signature to Bob.

In many existing security protocols, only the last message is used

in the derivation of the session key – but not the signature over

that message. This crucially influences security. Observe, that in

presence of the above attack the communication transcripts com-

puted by Alice and Bob are very similar. The only difference is that

the last signature is different from the one produced by Alice. At

the same time, Alice cannot recognize the modification introduced

by A, because a) there is no further message from Bob to Alice (in

which he could inform her of the modified signature he received)

and b) the signature is not used to derive the session key (so the fact

that the signatures are distinct will not be reflected in the two par-

ties computing distinct keys). Now, any security proof in a model

based on matching conversations is deemed to fail. In essence, the

problem is that the above attack cannot be ruled out via a reduc-

tionist argument to the security of the digital signature scheme.

Exchanging a signature with a new one on the same message does

not violate the standard security definition of digital signatures. As

a result, Alice and Bob still share the same session key after this

attack but they do not have matching conversations anymore. Next,

the attacker asks a Reveal-query to Bob’s oracle to obtain the secret

session key. Finally, A uses that key to successfully answer the

Test-query to Alice’s oracle.

The straight-forward solution is to require the signature scheme

to be strongly-secure, meaning that in the signature security ex-

periment the adversary is also allowed to output a new signature

on a message that has already been queried to the signature oracle.

In this way, A can directly be used to break the security of the

signature scheme and the proof can go through.

We note that in the protocol the ephemeral Diffie-Hellman keys

are well-protected against adversarial modifications by the digital

signatures. It is rather the digital signatures themselves that are

not appropriately secured against altering.

Alice Bob

Accept Accept

Last Message: (. . . ,v)

Alice Bob

Accept Accept

Last Message:
(. . . ,v)

Last Message:
(. . . ,v′)

. . .

. . .
. . .
. . .

Attacker
generates:
(v′ 6= v)

k k k k

Figure 1: Protocol Execution in the Presence of a Passive Ad-
versary (left) and under a No-Match Attack (right).

2.2 No-Match Attacks with Advice
The above attack only serves as an introductory example to no-

match attacks and the problem they pose in formal security analyses.

In the sequel, we will present a new class of (more subtle) no-

match attacks which to the best of our knowledge have not been

considered before. The crucial difference to the above example is

that the adversary will always be able to efficiently obtain the key

or some other valuable information of the cryptographic primitive

(i.e. the signature scheme in our example) via the queries granted

in the security definition. We generally refer to this information as

advice. Correspondingly, we call these attacks ‘no-match attacks

with advice’ as opposed to the above ‘no-match attacks without

advice’. Interestingly, our work shows that for some primitives

no-match attacks with advice are much harder to protect against

than no-match attacks without advice. For example, in our running

example it turns out that requiring strong security is not sufficient

to fix the security proof.

For the introduction of no-match attacks with advice we consider

the same setting as before. Instead of a concrete signature we more

generally consider a cryptographic valuev . Again the general attack
proceeds in three steps:

(1) A intercepts the last message. This message contains a cryp-

tographic value v .
(2) The adversary uses the queries granted in the security game

to efficiently compute a distinct cryptographic value v ′ , v
that makes Bob compute the same key as when using v .

(3) Finally, A replaces v with v ′ in the last message and sends

it to Bob.

The difference between no-match attacks with and without ad-

vice is in Step 2 of the general attack pattern. Roughly, in a no-

match attack with advice the adversary may, solely by the use of

her access to the attack queries of the key exchange experiment,

obtain secret information that allows her to compute v ′ efficiently

whereas in no-match attacks without advice no such information

is available. This information can include the secret signing key of

a signature scheme, cryptographic message authentication code, or

public key encryption scheme, or the plaintext message in case v is

a PKE-ciphertext on some secret message.

This new type of no-match attacks is often applicable to proto-

cols that are shown to provide security against key compromise

Session F3: Crypto Pitfalls CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1348

impersonation (KCI), exposure of the session states (e.g. ephemeral

secret keys or intermediate values), or (full) perfect forward secrecy

(PFS). In these scenarios the adversary is additionally provided with

at least one long-term key or with secret session state information,

either directly of the Test-oracle or of the oracle it communicates
8

with. Note that many widely-used models [14, 29, 35–37] allow the

adversary to perform these actions.

In the following, for simplicity of exposition and due to their

high relevance to existing security analyses, we concentrate on

no-match attacks on the last protocol message. We emphasize that

no-match attacks may also be launched against earlier protocol

messages (as exemplified in Appendix B).

there is an oracle that shares

original key with Test-oracle
no oracle shares original

key with Test-oracle

Test-oracle has partner oracle no partner oracle

passive attacks active attacks

no-match attacks

Figure 2: Attack spectrum and corresponding states of the
Test-oracle when relying on partnering definitions based on
matching conversations.

2.3 Exploiting No-Match Attacks and Scope
Finding a no-match attack on some protocol in some security model

does not per se lead to a successful attack. To turn a no-match into

a successful attack on the protocol we additionally need that the

security model is exploitable.

Definition 2.3 (Exploitable Security Model). We say that a security

model S is exploitable if the following holds for every protocol π
analyzed in S : every adversary that launches a successful no-match

attack on π can efficiently be used to break the security of the

protocol with respect to the security definition of S .

In traditional security models, no-match attacks can be exploited

in two ways. The most general way (that we already used before)

is to ask a Reveal-query to the oracle with the same original key

as the Test-oracle. Next we use this key to answer the Test-query.
By the definition of a no-match attack, the two oracles are not part-

nered, and thus this constitutes a valid (as defined by the winning

condition) attack in the security model.

Another way to exploit no-match attacks is by breaking explicit

mutual [6] (or unilateral/server-only [24]) authentication, a secu-

rity property that is not common in every security model for key

exchange. Essentially, the requirement says that if an oracle accepts

(i.e. computes some key), then there must always be another accept-

ing oracle that has matching conversations to this oracle. It is clear

that our no-match attacks directly break authentication as they can

make two oracles accept (even with the same key) although they

8
We want to avoid the term ‘partnered’ here because we consider no-match attacks

after which two oracles are essentially not partnered.

do not have matching conversations.
9
In combination, these two

approaches for exploiting no-match attacks make them applicable

to a broad class of security protocols (and their respective security

models). This class contains key-exchange protocols that are based

onmodels which only (explicitly) formalize key-indistinguishability

like the CK [17] or eCK [37] model, and combinations of both, i.e.

protocols secure in models which besides key-indistinguishability

also explicitly require authentication (in the sense of [6]). Moreover,

no-match attacks can also be launched against protocols that are

secure under the notion of ACCE protocols [29]. In general, our

no-match attacks can theoretically be applicable to all protocols

that rely on matching conversations to define partnering, including

for example password-based key exchange protocols like [5].

2.4 Strong Security and Deterministic
Computation of v

It is relatively obvious that our no-match attacks can succeed if v
is computed using a probabilistic algorithm. For example, if v is a

digital signature, an attacker that obtains the secret signing key can

simply re-sign the message to compute v ′. With high probability

we have v ′ , v . What is more subtle is that our attacks also work

if the signature scheme used to compute v provides strong security

or even is deterministic. This is exactly the point where many

security proofs fail. Let us go into more detail for our running

example, signed Diffie-Hellman. Recall that the security definition

of strongly secure signatures gives the adversary access to the

public key and a signing oracle. The winning condition is that the

adversary can produce a newmessage/signature pair. Now consider

an attempt to reduce the security of signed Diffie-Hellman to the

strong security of the signature scheme. The crucial point is that

in no-match attacks with advice the adversary is also given the

secret key. In particular, the security definition of strongly secure

signatures does not exclude that the adversary produces a new

signature on a previously queried message when the secret key is
given.

Quite similarly, it is not enough to require that the signature

scheme has a deterministic signing procedure. The problem is that

this only guarantees that the signing algorithm specified by the sig-
nature scheme outputs a single signaturev per messagem. However,

there may exist other algorithms that output, givenm, a signature

v ′ , v such that bothm,v andm,v ′ pass the signature verification
positively. At this point we remark that the very same argument

on deterministic signatures can be made for the case of no-match

attacks without advice as well showing that deterministic sign-

ing does not guarantee strong security. So in sum requiring deter-

ministic signatures, or more generally deterministic cryptographic

primitives that compute the protocol messages, is not helpful at all.

3 NO-MATCH ATTACKS ON EXISTING
PROTOCOLS

As sketched before many security proofs of key exchange protocols

fail to cover no-match attacks. At the same time, it can be hard to

find out where the exact problem is. In this section, we therefore

9
For simplicity we assume that there is no potential third oracle having matching

conversations. (An active attacker, that controls the inputs to all oracles, can easily

make any oracle not have matching conversation to some other oracle.)

Session F3: Crypto Pitfalls CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1349

present a diverse list of examples of existing protocols together with
concrete descriptions of successful no-match attacks. Note that all
our no-match attacks with advice apply to security models that

also claim to model perfect forward secrecy (PFS), key compromise

impersonation (KCI) attacks, or state (or ephemeral key) reveal at-

tacks. Intuitively, security against key impersonation attacks means

that key indistinguishability even holds if the adversary is provided

with the long-term secret of the Test-oracle at the beginning of the

security game. Perfect forward secrecy, in contrast, usually means

that the adversary is also allowed to obtain the long-term keys of

some oracle – which now even may be the Test-oracle or an oracle

partnered to the Test-oracle – after the oracle has accepted and

computed the session key. In stronger security models (like eCK)

the adversary is even allowed obtain the long-term keys before

the oracles accept. In the following we have classified the affected

protocols (in their corresponding security models) with respect to

the cryptographic mechanisms they rely on in the last message. We

provide a detailed example of a no-match attack in Appendix B.

3.1 Integrity Protection – MACs
The classical definition of MACs is deterministic. However, recently

Dodis, Kiltz, Pietrzak and Wichs [21] and Blazy, Kiltz, and Pan [11]

introduced efficient probabilistic and provably secure MACs that

have a variety of useful applications. We show that employing prob-

abilistic MACs for integrity protection in key exchange protocols

can be problematic. The first class of attacks deals with protocols

where Alice and Bob (i.e. their oracles) use their long-term secret

keys to derive a secret MAC key that is used to protect the in-

tegrity of the previous protocol messages. Assume that Alice sends

a probabilistically computed tag over all previous messages in the

last protocol message v . As in the general description of no-match

attacks, the attacker intercepts this message and computes a new

message v ′ , v that instead is sent to Bob. This works as follows:

By the power of the queries granted when modeling KCI and PFS se-

curity, the attacker can obtain Alice’s secret key (at the latest) after

she has sent v . In the next step, the attacker can compute the MAC

key used for the last protocol message. Finally, the attacker uses

this MAC key to compute a new tag v ′. Both Alice and Bob accept

with the same key although they are not partnered since Alice has

sent v while Bob has received v ′. A protocol which allows the use

of probabilistic MACs that is susceptible to our attacks is the Jeong-

Kwon-Lee KAM protocol (CANS’06) [31]. For concreteness, let us

assume that Alice’s oracle is the Test-oracle. The attack succeeds

since, in the KAM protocol, the MAC key can be computed from

the secret long-term key of Alice. However, in the KAM protocol

the MAC key can also be computed from the secret ephemeral key

of Bob’s oracle which in turn can be obtained via a RevealState
query. Thus there is a second way to launch a no-match attack

that utilizes the RevealState query. The attack proceeds exactly in

the same way except that the MAC key is computed using Bob’s

ephemeral secret key.

3.2 Authentication via Digital Signatures
In the following we will concentrate on protocols where Alice sends

a digital signature on messagem to Bob as the last protocol message.

Our no-match attack proceeds exactly as outlined in our introduc-

tory example Signed Diffie-Hellman: the adversary first intercepts

Alice’s signature and uses her secret signing key to generate a new

signature onm. With overwhelming probability this signature will

differ from the original one. Finally, it sends the new signature to

Bob who checks its validity (and, on success, possibly sends some

other values to Alice). At the end of the protocol, Alice will accept

although there is nomatching conversation with Bob. Protocols that

are susceptible to this attack are the signed Diffie-Hellman protocol

by Sarr et al. [39] that relies on the NAXOS transformation [37]

(SCN’10), the signature-based compiler [20] by Cremers and Feltz

which achieves perfect forward secrecy (PFS) in two-message or

one-round key exchange protocols (ESORICS’12)
10
, the signature-

based protocol [2] by Alawatugoda et al. (ASIACSS’14), and the

recent signature-based protocol [9] by Bergsma et al. (PKC’15). The

security models of these works all allow the adversary to obtain

Alice’s long-term secret before the last protocol message is received

by Bob’s oracle. At the same time the signature schemes used are ei-

ther probabilistic or deterministic. We remark that since the authors

of [2] do not require strong security, their protocol can also simply

be attacked by a no-match attack without advice. We provide a

detailed illustration of our attack on the compiler by Cremers and

Feltz (when applied to the NAXOS protocol) in Appendix B. We

remark that our no-match attack leads to the odd situation that this

compiler, which is designed to increase the security of the input

protocol, actually outputs a theoretically insecure protocol even if

the input was secure to begin with.

3.3 Authentication via Public Key Encryption
In the following, we consider a no-match attack that can be launched

if Bob sends an encrypted message to Alice that has to be decrypted

and checked using Alice’s secret key. In the following, Alice’s oracle

will serve as the Test-oracle. Recall that in the KCI security experi-

ment the adversary is given Alice’s secret key. It can thus intercept

the ciphertext, decrypt it and compute a new ciphertext on the same

message. If the encryption system is probabilistic (what is required

to guarantee mere CPA security) the ciphertext will differ from

the original one with high probability. However, Alice will accept

the new ciphertext without having a matching conversation with

Bob. Our no-match attacks can be applied to the recent protocol

by Alawatugoda, Boyd, and Stebila [1] (ACISP’14) which presents

a key exchange protocol that relies on a public key encryption

scheme that is secure under adaptively chosen ciphertext attacks in

the presence of after-the-fact leakage (CCLA2) [22]. (Essentially the

10
The authors of [20] consider four models: Mw

, eCKw , M-PFS, and eCK-PFS. In
contrast to (eCKw , eCK-PFS),Mw

andM-PFS do not consider EphemeralKey queries
which reveal the ephemeral secret keys of protocol sessions. Note that in [20], Cremers

and Feltz require that the signature scheme does not reveal the long-term keys even

if the random coins are revealed (via an EphemeralKey-query). This can be realized

using a deterministic signature scheme. In fact, in their security theorem Cremers

and Feltz explicitly specify the signature scheme to be deterministic. The authors also

claim (Remark 1 in [20]) that the signature-based compiler could use a randomized

(strongly) unforgeable signature scheme if the security model does not allow to ask

a EphemeralKey-query. However, we can show that even if the security models are

restricted in one of these ways (deterministic signature scheme vs. probabilistic sig-

nature scheme with no EphemeralKey-query), the signature-based compiler is still

vulnerable to our no-match attacks. (Moreover, the attack also works if the random

coins involved in the signature generation cannot be revealed by a EphemeralKey.)

Session F3: Crypto Pitfalls CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1350

definition is like IND-CCA security but the adversary can obtain

bounded information on the secret key.)

3.4 The BPR Framework (EC’00)
Under certain circumstances, no-match attacks can be launched

against the password-based key exchange protocol of Bellovin and

Merrit [8] that was provided by Bellare et al. (BPR) [5]. BPR analyze

a two message protocol EKE2, where the last message consists of a

single ciphertext c . Also, the derived session key does not depend

on c but only on the plaintext encrypted in c . For the concrete

instantiation of the encryption scheme they refer to [10], which

proposes several deterministic ciphers with arbitrary finite domains.

We observe that using any of the ciphers in [10] to instantiate EKE2
does not prevent no-match attacks if i) two distinct ciphertexts are

mapped to the same plaintext by the decryption routine, as it, for

example, is the case in the cycle-walking cipher of [10] and ii) the

receiver of the ciphertexts does not check if the ciphertexts are in

the correct domain. However, none of the ciphers in [10] explicitly

check ii) in the decryption algorithm.

3.5 Further Primitives
The above list of possible no-match attacks is by no means complete.

We have focused on the most popular cryptographic primitives used

in key exchange protocols. Also our selection of no-match attacks

should exemplify the diversity of possible no-match attacks.

There are many primitives that when used in key exchange

protocols can lead to no-match attacks. Possible candidates are all

primitives that make one or more messages be computed probabilis-

tically like for example NIZK proofs, or probabilistic authenticated

encryption systems. However, we stress that general statements on

the vulnerability of some primitives to no-match attacks are inap-

propriate. No-match attacks are not launched against primitives

but against a concrete protocol in a concrete security model. At the

same time we also want to emphasize that no-match attacks not

only rely on modifications of cryptographic values. In fact, they

may modify any data that is exchanged between two communica-

tion partners. Indeed this is one reason why they are so hard to

spot. For example, in Appendix E.2 we describe subtle no-match

attack that exploit that group elements can have more than one rep-

resentation. Additionally, Appendix C shows that no-match attacks

can be launched by modifying values that are entirely independent

of the remaining protocol messages and in particular of the session

key.

4 NOVEL DEFINITIONS OF PARTNERING
Let us stress once again that the above attacks do seemingly not

harm the practical security of the above protocols in any meaning-

ful way. However, strictly speaking their security proofs are not

sound. In this work, we propose several approaches to armor pro-

tocols against no-match attacks. Ideally our solutions should be as

little invasive as possible to make them easily applicable to existing

protocol implementations as well (either via only minor modifica-

tions of the protocol or no modification at all). In the following

we will concentrate on our main and recommended solution to

the problem of no-match attacks – a modification of the definition

of partnering (as compared to modifications of the primitives or

the overall protocol). In essence, we propose a careful relaxation

of the notion of matching conversations. In Appendix E we pro-

pose two other solutions. The first relies on a careful instantiation

of the building blocks that are used in a security protocol. More

concretely it proposes to only use unique primitives and unique

message encodings. The second solution relies on a compiler (in

the random oracle model) which makes the computation of the ses-

sion key crucially depend on every message bit that is exchanged

between two parties. In this way, the computation of the session

key needs to be adapted slightly. Before we detail our new defi-

nition of partnering, we note that although no-match attacks do

not directly give rise to practical attacks they can be problematic

for the application they are used in, for example if the protocol is

used under the (implicit) assumption that there is a correspondence

between matching conversations and successful key establishment.

Thus protocols that have been analyzed on the basis of a modified

definition of matching conversations should only be used after a

careful analysis of the application scenario.

Intuitively, what we want from a secure protocol (from a design

perspective) is that any active modification of the exchanged mes-

sages should result in the two communicating oracles to compute

distinct and unrelated keys. This models that the adversary has

no way of meaningfully tempering with the messages. Now since

the keys are unrelated we can also allow the adversary to reveal

one of the keys. This should not harm the secrecy of the other key.

With this rationale in mind, we can clearly isolate where no-match

attacks introduce a theoretical problem. In a no-match attack, the

keys remain the same although there is an active attack (see Fig-

ure 1 and Figure 2). Our final solution is to change the security

model such that no-match attacks (and only them!) do not break

the security of the protocol anymore. Arguably, this is legitimate

since no-match attacks do not constitute realistic attacks anyway.

Thus, from a more abstract viewpoint we can view the omission

of no-match attacks from the set of valid attacks as an attempt to

adapt theoretical security definitions for key exchange to model

practical protocol settings more realistically.

4.1 Robust Matching Conversations
What we intuitively require from our modified definition of part-

nering is that it deletes no-match attacks from the set of attacks

that are considered valid. In our new definition, we try to capture

only ‘meaningful’ modifications of the messages by the adversary.

Intuitively, what we want is a definition that is useful in situa-

tions where it may not be harmful for Bob to accept a cryptographic

value v ′ that has been produced by an adversary. For example, in

signed Diffie-Hellman, if the signature v ′ is valid and produced on

the same message as Alice’s signature v , one could argue that Bob

may still be able to securely use the corresponding session key in

practice. A natural first approach to define this kind of partnering is

to relax the definition of matching conversations. More concretely

one could define a form of ‘robust matching conversations’. Under

such a definition the session identifier of an oracle would not only

consists of the transcript of messages that this oracle actually gener-

ated in a protocol run. In contrast, the session identifier of an oracle

would additionally contain the entire set of transcripts that could

have been produced by that oracle in presence of a no-match attack.

Session F3: Crypto Pitfalls CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1351

However, there are two major disadvantage of such a definition.

The first one is that it ultimately ties the formalization of security

(i.e. of the session identifier) to the design of the protocol (i.e. to

the ways the protocol admits no-match attacks). The second one

is that it may be difficult to specify the session identifier because

they are hard to spot or just because there are too many. Our final

definition circumvents these problems entirely.

4.2 Original Key Partnering
We propose to use the following partnering definition as a standard

substitution of matching conversations to exclude no-match attacks

while still providing a very high level of security.

Definition 4.1 (Original Key Partnering). Two oracles a and b are

said to be partnered if both of them have computed their original

key.

Notably, original key partnering ultimately decouples the defini-
tion of partnering from the sent protocol messages. Besides being

theoretically compelling, this is an important benefit as one does

not have to explicitly consider all no-match attacks possible in a

protocol. Moreover, it is a useful partnering definition in situations

in which it is hard to find an appropriate message-dependent part-

nering definition in the first place, for example when dealing with

PKE encryption as detailed in Section 3.3 and Appendix E.1. Its in-

dependence from concrete messages makes original key partnering

a very general and versatile definition of security. Furthermore, it

is a very practical partnering concept as it concentrates on a single

cryptographic value, independent of the complexity of the protocol.

This supports simple falsification. Our definition can generically

be plugged into all existing security definitions that rely on match-

ing conversations. At the same time it fixes all MC-based security

proofs that fail to address no-match attacks: as an immediate con-

sequence of original key partnering, no-match attacks vanish from

the spectrum of possible attacks against a protocol (Figure 3).

We remark that the definition of original key partnering nicely

supports the following, natural intuition: if (despite there being an

active attack) the session keys computed by two oracles are equal

to those computed in a protocol run with a passive attacker then

these keys are treated as being (cryptographically) as good as well.

To give a slightly different perspective, our definition might be

viewed to follow some form of ideal/real world paradigm. First we

define an ideal run of a key exchange protocol where the attacker is

passive only. Our definition decides that for key exchange protocols

the defining characteristic of such a run is that both oracles have

computed their original key, i.e. the original key is computed by

Alice and Bobwithout any adversarial interference. Next we classify

any attack with respect to this ideal run. If after some adversarial

modification both oracles still have computed the original key, then

this does not deviate from the ideal definition, and thus does not

constitute a valid attack.

In our definition of original key partnering we deliberately avoid

to explicitly enumerate all possible ways in which messages may be

modified to launch a successful no-match attack. Besides being very

complex such a classification is always highly protocol-dependent.

Intuitively, our definition rather focuses on the fact that the modified
messages trigger the same behavior of the receiver as the original ones
– and ultimately lead to the computation of the same (original) key.

When comparing original key partnering with previous partnering

notions we can observe that similar to matching conversations our

new definition fulfills the first set of desirable properties, 1)–6),

given in Section 1. However, in contrast to matching conversations

it also fulfills properties 7)–9). Proving security under original key

partnering is comparable to proofs under matching conversations,

with a tendency to be slightly simpler (since less cases have to be

considered): proofs under matching conversations usually distin-

guish active and passive attacks. Roughly, first active attacks are

ruled out by reducing to the properties of the underlying primitives.

Then security follows from the passive security of the protocol.

In contrast, when using original key partnering, we only have to

consider a subset of active attacks in the first step, namely those

that make either Alice or Bob not compute their original key. We

provide an illustrative example protocol in Appendix D together

with a proof sketch.

there is an oracle that shares

original key with Test-oracle
no oracle shares original

key with Test-oracle

Test-oracle has partner oracle no partner oracle

passive attacks active attacks

Figure 3: Attack spectrum and corresponding states of the
Test-oracle when relying on original key partnering.

Remark 1. We stress that for our security definition it is not helpful

to isolate messages that contribute to the computation of the session

key from those that do not, as it is usually done when relying on

partial matching conversations. The core problem is that no-match

attacks may aim to modify both, messages which do contribute

to the session key derivation but also messages which do not. For

example, the signatures in our running example obviously con-

tribute to the session key generation in the sense that if they are

invalid, the session key will not be computed at all. However, our

results show that in some protocols one can launch a successful

no-match attack by modifying these signatures.
11

One the other

hand, in Appendix C we show that in traditional security models,

augmenting protocol messages with new but entirely independent

messages can lead to no-match attacks, too.

We also remark that despite its apparent generality the partner-

ing function given in [7] does not cover our definition. Roughly, a

partnering function takes as input a single oracle, a communica-

tion transcript, and the (so-called) intended partner of that oracle

(see Section 5) and outputs the partnered oracle, if it exists. (If the

input oracle communicates with the adversary, the function simply

outputs a fixed error symbol. It is important to note that in such

situations, it is trivial for the adversary to compute the session

key of the Test-oracle - it can simply run the protocol with the

Test-oracle.) In contrast, our partnering definition rather takes as

input two oracles. Conceptually, each pair of oracles, is associated

with their original key. (So, for n oracles there are O(n2) original
11
Some signature schemes, like re-randomizable signatures, are even by definition

modifiable, albeit in some well-restricted way.

Session F3: Crypto Pitfalls CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1352

keys.) In our definition, two oracles are then considered partnered

if both have indeed computed their original key. To deal with situa-

tions in which an oracle is communicating with the adversary we

can require that the peer of the Test-oracle is uncorrupted, as for
example in [37].

Similarly, our new definition of original key partnering cannot be

viewed as an instantiation of the session identifier concept, where

each oracle is associated with a session identifier and partnering is

decided by comparing the session identifiers of two oracles. In our

new definition each oracle may rather be viewed to have several

potential session identifiers (original keys), one with each other

oracle. Partnering only holds if both oracles have indeed computed

it.

4.3 Partnering via Mere Key Comparison is Not
Sufficient

Wewould like to emphasize that we do not define partnering by com-
paring session keys. Such a definition would fail to reflect real-world
attacks in the security model. Let us provide a brief example. For

example, we can easily consider a protocol where the adversary can

– via an active attack – make an oracle accept with a key of some

other oracle. In practice, an adversary could for example make a

client computer with no physical protection mechanisms compute

the same key that is shared between two strongly protected servers.

Attacking the client computer would then also reveal the servers’

session key and an adversary could simply distinguish it from a ran-

dom key. We clearly want that such an attack is reflected in a strong

security model. More generally, any protocol where the adversary

can make an oracle compute a given key should be considered inse-

cure and most security protocols successfully protect against this

kind of attacks.
12

However, when we use mere key comparison to

define partnering, revealing the client computer before breaking

key indistinguishability of one of the server oracles is deemed a triv-

ial attack as it holds the same key as the two servers. This is highly

unintuitive. When using original key partnering, in contrast, this is

a legitimate attack in the security model. This choice of partnering

definition clearly distinguishes our work from all previous results

that (partly) define partnering by considering if two oracles have

merely computed the same key (not necessarily the original key),

for example [5]. Our definition is stronger than all these definitions:

with original key partnering, if an attacker manages to make two

oracles accept with the same key (distinct from the original key)

then this is guaranteed to be deemed a successful attack. In contrast,

mere key comparison may not recognize this as an attack at all.

4.4 Public vs. Secret Partnering
As the original key must be kept secret, original key partnering does

in general not allow the adversary to efficiently test whether two

oracles are partnered. In general, it is thus harder for the adversary

to base its strategy on the fact that in the past certain pairs of oracles

have been partnered or not. We would like to comment on this in

more detail and argue why relying on such a ‘hidden’ partnering

definition is not a serious restriction.

12
If the attacker is also allowed to reveal session keys it should even be possible to

successfully break key indistinguishability independent of the attackers computational

power.

First, we stress that the adversary controls the entire network

and can decide on which message is delivered to which oracle.

Moreover when behaving entirely passive, the adversary already

knows exactly which oracles are partnered. Thus any unclarity

in deciding if two oracles are partnered is always introduced by

the adversary herself in exactly the way she desires to. It is also

worth mentioning that the adversary knows the protocol layout

and the used primitives. So it already knows which changes to the

transmitted messages influence the computation of the session key.

At the same time we stress that our definition of partnering does by

no means exclude that there also exist (efficient) public algorithms

for checking if two oracles are partnered. This is important whenwe

consider results like the compiler of [15] which explicitly requires

an efficient public function for checking whether two oracles are

partnered with each other.

Second, from a theoretical point of view the partnering definition

is only required in the security analysis. For provable security, it

is not required that any entity can actually compute partnered

oracles efficiently. Partnering is merely used to define the winning

conditions of the adversary. In particular, we do not have to make

the simulator be able to check if the partnering condition (as part of

the winning condition) is violated. In the security proof, we simply

assume an adversary that breaks the security definition and, as part

of that, respects the partnering definition. This is quite similar to the

fact, that we cannot have the simulator in the indistinguishability

game be able to verify if the adversary’s guess (for a real or a

random key) is actually true. (The latter fact is simply because

any simulator that can verify the adversary’s guess can already

compute the solution on its own. Thus it cannot embed the security

challenge at this point.)

Finally, we would also like to emphasize that it is not necessary

to use session identifiers to formalize the access of the adversary to

its queries. Although there exist security models like the Canetti-

Krawczykmodel [17] or themodel in [5] that uses session identifiers

to access oracles (note that this strategy is problematic when session

identifiers are post-specified), it is always possible to formulate the

entire security game without them, for a recent example of this

type of formalization see the model used in [24].

We also remark that some security models specify that the ses-

sion identifier computed by two oracles is given to the adversary

after they computed the session key, for example in [5]. This also

holds for the Test-oracle. However, in these models session identi-

fiers are based on public information only (and used to formalize

access to queries). As usual, the session key must be kept secret.

Therefore basing our session identifier on secret original keys is, in

some sense, not a restriction. In particular, the adversary can still

access the same public information generated in the protocol run

by two oracles as in the model of [5].

4.5 Robust Composition
Original key partnering can essentially relax security models such

that no-match attacks are not considered as legitimate attacks any-

more. In Appendix C we show that our new definition has another

important advantage, a basic form of composability that we call

robust composition. Moreover, we show that partnering based on

Session F3: Crypto Pitfalls CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1353

matching conversations lacks even the weakest form of robust

composition.

5 NO-MATCH ATTACKS AND EXPLICIT
AUTHENTICATION

Our solutions so far deal with no-match attacks in security models

for key exchange that do not explicitly define authentication. Cor-

respondingly no-match attacks can only break key indistinguisha-

bility in these models. When dealing with explicit authentication,

we can also rely on our alternative solutions given in Appendix E.

They inherit the same benefits and disadvantages as when used to

deal with no-match attacks against key indistinguishability.

However, again our main and recommended solution is to pro-

vide a new definition of explicit authentication that does not in-

herently rely on matching conversations. The new definition is

inspired by the new partnering definition given in Section 4.1. In

the following we will elaborate on our new definition of explicit

authentication in more detail. We proceed in two steps to obtain

our final notion. In the first step, we develop a new notion of explicit
authentication by decoupling the classical notion of authentication

from the notion of matching conversations. We arrive at what we

believe to be the first notion of authentication that is independent

from a concrete partnering definition. (Previous definitions have

usually been based on matching conversations.) This is conceptu-

ally very attractive as it allows to parametrize both key indistin-
guishability and explicit authentication with a single common choice
of partnering notion. In the second step we instantiate our new

general notion of explicit authentication with our new notion of

original key partnering. We arrive at a notion that is well-suited to

deal with no-match attacks in models with explicit authentication.

5.1 Decoupling Explicit Authentication and
Matching Conversations

As a template we use the definitions provided in the original work

of Bellare and Rogaway [6]. However, we only focus on the second

property of the definition for authentication given in [6].
13

We

stress that, as we rely on original key partnering, our definitions

are specific to key exchange models.

Let a be an oracle of A. The peer B of a is the holder of the key

that a uses to verify/authenticate the (received) communication

with. (For example, we may assume that Alice uses Bob’s public key

to verify messages that has been sent from Bob to Alice. Likewise

Alice could use MAC key shared with Bob to check if some message

has been authenticated by Bob.) The peer of a is sometimes also

called the intended partner of a.

Definition 5.1 (General Explicit Mutual Authentication). We say

that a protocol provides explicit authentication if the following

holds: if an oracle a of A with uncorrupted
14

peer B accepts, then

there exists an oracle b with peer A that is partnered with a.

13
We regard the first part of this definition – which states that oracles with matching

conversations both accept – as a definition of completeness rather than a formulation

of a security property.

14
We note that the authentication definition [6] does not explicitly require that the

peer is uncorrupted. However, the entire security model does not allow for corruptions

at all.

When plugging in matching conversation as the partnering def-

inition of choice we obtain the classical definition of security for

authentication.

5.2 Explicit Authentication and Original Key
Partnering

We will now plug our new partnering definitions into the general

definition. Putting things together we obtain the following simple

notion of explicit authentication that rules out no-match attacks.

Definition 5.2 (Explicit Mutual Authentication with Original Key
Partnering). We say that a protocol provides explicit authentication

with original key partnering if the following always holds: if an

oracle a of A with uncorrupted peer B accepts, then there exists an

oracle b with peer A that accepts such that a and b have computed

their original key.

Similar to before, our new notion allows the adversary to perform

any modification on the protocol as long as the oracles of both A
and B compute the original key. Again, such modifications are not

considered an attack. We remark that the same rationale for using

original key partnering in key exchange protocols applies to our

new definition of authentication as well. We note that since our

partnering definition is independent of the message flow, we do not

need to separately cover situations where A or B has sent the last

protocol message like for example in [29]. Moreover no artificial

last message is required as in [6].

6 STRENGTHENING SECURITY DEFINITIONS
So far we have showed that relying on original key partnering

can relax security models such that no-match attacks are not con-

sidered as legitimate attacks anymore. We would like to remark

that original key partnering can also be used to strengthen security

models. In particular, we can show that original key partnering can

be used to re-define what it means for an oracle to communicate

with an honest oracle (and not with the attacker). In this way we

immediately obtain stronger notions for, for example, unilateral au-

thentication and perfect forward secrecy than existing approaches.

Let us expand on this for unilateral authentication – the widespread

scenario where an unauthenticated client communicates with an

authenticated server.

Unilateral security typically requires that only client oracles may

serve as Test-oracles, since in settings with an authenticated server

and an unauthenticated client, only the client can verify if incoming

messages really were sent by its communication partner. However,

usually security definitions are extended so that server oracles

may serve as Test-oracles as well, albeit only under very severe

restrictions (for example [24, 34]). Essentially, these restrictions

guarantee that the server oracle indeed communicates with an

honest client oracle and not with the adversary. This is reasonable

since an attacker that simply behaves like an unauthenticated client

can always engage in a communication with a server oracle and

know the session key afterward (it just runs the algorithms any

other client would run). Obviously it is very crucial to define for a

server oracle what it means to communicate with an honest oracle.

Existing approaches to define this rely on matching conversations.

Session F3: Crypto Pitfalls CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1354

They essentially state that server oracles may also serve as Test-
oracles if there exists a fresh (i.e. session key and secret long-term

key have not been given to the adversary) client oracle that has

acceptedwithmatching conversationswith the server oracle. This is

very strict. In particular it means that the communication between

those oracles has not been modified on transit at all, i.e. the attacker

must remain passive. Our new definition may provide a slightly

more generous alternative: one may alternatively allow a server

oracle to serve as a Test-oracle if there exists a fresh client oracle

that has accepted and both client and server oracle have computed

their original key. In contrast to before, this means that the attacker

is allowed to perform at least some active attacks, as long as these

attacks do not change the fact that both oracles compute their

original key. Another definition that can be strengthened using the

concept of original key partnering is the notion of origin session

that was introduced by Cremers and Feltz [20] and used to formalize

notions of perfect forward secrecy. For a similar reason as with

unilateral authentication it tries to capture messages that really

originate from some oracle (and were not crafted by the attacker).

The definition requires that for a considered message there must

exist an oracle that exactly output this message before. Original

key partnering can relax this requirement by additionally allowing

that this message has been produced via a no-match attack by the

adversary.

7 FURTHER RELAXATIONS AND OBSTACLES
Our new notion improves security definitions based on matching

conversations while still keeping its important conceptual advan-

tages. It does so by relaxing the security definition such that certain

active modifications by the attacker are not considered attacks

anymore. However, there is a strict, reasonable limit to the set

of allowed modifications: only those attacks are not considered

harmful that make both parties still compute their original key.

Intuitively, this means that in the presence of any such attack the

computed shared secret is still as good as in case of no attack at

all. We feel that this well-defined lower limit that corresponds to a

strong cryptographic intuition is one of the most compelling and

valuable features of our new notion. In general finding a relax-

ation of a strict security notion should always be accompanied by a

thorough explanation of why it does not consider attacker actions

harmless which might actually be dangerous. We emphasize, that

potentially there is still room for improvement of our partnering

definition. Consider for example (artificial) protocols in which two

key exchange protocols of equal strength are run at the same time

between Alice and Bob. The session key is one of the session keys

of the underlying protocols. Now assume the attacker launches an

active attack that simply makes Alice and Bob use the other session

key. Corresponding to our notion such an influence on the shared

key is considered an attack, as it is the case with security under

matching conversations. Cryptographic intuition however, may

deem this protocol secure. Essentially our security notion requires

that whenever the attacker changes the key of some party this is

considered an attack. We find this generally very reasonable since

we have no guarantee of the strength of the key after the modifi-

cation (in contrast to modifications deemed harmless according to

original partnering). Future work may strive to further weaken the

notion of original key partnering to also recognize these kind of

modifications as non-harmful. However, to us it is not clear if any

such definition would not also consider modifications as harmless

that cryptographic intuition would deem legitimate attacks. In par-

ticular, to be convincing, such a definition should have a strong

security argument akin to the strict limit of allowed modifications

that we mentioned before which guarantees that after the modifi-

cation of used session keys by the attacker, the actually used keys

are still strong.

Apart from that, we believe that such a relaxation may be prob-

lematic on a technical level as well. Let as go into more detail. As

an example one could think of a similar protocol with two runs of

atomic key exchange protocols in parallel. The only difference now

is that the two atomic protocols have distinct strength, one with

strong security and one with weak security.Imagine that in case of

no active attack Alice and Bob take as session key the one key from

the strongly secure protocol. Now the attacker may modify the

protocol to make both parties use the weak key. Clearly this must

be considered an attack. However, the only difference between the

protocol mentioned before is the strength of the second atomic

protocol run. Before both atomic protocols had the same strength,

now the second is weaker. So to account for this, a general security

definition (that crucially relies on a good partnering definition)

must define what is a legitimate attack and what can be considered

harmless depending on the strength of one of its building blocks. Such
an approach is very counter-intuitive. For example, the security
definition of a digital signature construction that computes long

messages via a hash function should also not depend on the strength

of the underlying hash function. It is only the security proof that

should rely on the hash function’s strength.

REFERENCES
[1] Janaka Alawatugoda, Colin Boyd, and Douglas Stebila. 2014. Continuous After-

the-Fact Leakage-Resilient Key Exchange. In ACISP 14 (LNCS), Willy Susilo and

Yi Mu (Eds.), Vol. 8544. Springer, Heidelberg, 258–273. https://doi.org/10.1007/

978-3-319-08344-5_17

[2] Janaka Alawatugoda, Douglas Stebila, and Colin Boyd. 2014. Modelling after-

the-fact leakage for key exchange. In ASIACCS 14, Shiho Moriai, Trent Jaeger,

and Kouichi Sakurai (Eds.). ACM Press, 207–216.

[3] Boaz Barak, Yehuda Lindell, and Tal Rabin. 2004. Protocol Initialization for the

Framework of Universal Composability. Cryptology ePrint Archive, Report

2004/006. (2004). http://eprint.iacr.org/.

[4] Mihir Bellare, Dennis Hofheinz, and Eike Kiltz. 2015. Subtleties in theDefinition of

IND-CCA: When and How Should Challenge Decryption Be Disallowed? Journal
of Cryptology 28, 1 (Jan. 2015), 29–48. https://doi.org/10.1007/s00145-013-9167-4

[5] Mihir Bellare, David Pointcheval, and Phillip Rogaway. 2000. Authenticated Key

Exchange Secure against Dictionary Attacks. In EUROCRYPT 2000 (LNCS), Bart
Preneel (Ed.), Vol. 1807. Springer, Heidelberg, 139–155.

[6] Mihir Bellare and Phillip Rogaway. 1994. Entity Authentication and Key Dis-

tribution. In CRYPTO’93 (LNCS), Douglas R. Stinson (Ed.), Vol. 773. Springer,

Heidelberg, 232–249.

[7] Mihir Bellare and Phillip Rogaway. 1995. Provably Secure Session Key Distribu-

tion: The Three Party Case. In 27th ACM STOC. ACM Press, 57–66.

[8] Steven M. Bellovin and Michael Merritt. 1992. Encrypted Key Exchange:

Password-Based Protocols Secure against Dictionary Attacks. In 1992 IEEE Sym-
posium on Security and Privacy. IEEE Computer Society Press, 72–84. https:

//doi.org/10.1109/RISP.1992.213269

[9] Florian Bergsma, Tibor Jager, and Jörg Schwenk. 2015. One-Round Key Exchange

with Strong Security: An Efficient and Generic Construction in the Standard

Model. In PKC 2015 (LNCS), Jonathan Katz (Ed.), Vol. 9020. Springer, Heidelberg,

477–494. https://doi.org/10.1007/978-3-662-46447-2_21

[10] John Black and Phillip Rogaway. 2002. Ciphers with Arbitrary Finite Domains. In

CT-RSA 2002 (LNCS), Bart Preneel (Ed.), Vol. 2271. Springer, Heidelberg, 114–130.
[11] Olivier Blazy, Eike Kiltz, and Jiaxin Pan. 2014. (Hierarchical) Identity-Based

Encryption from Affine Message Authentication. In CRYPTO 2014, Part I (LNCS),

Session F3: Crypto Pitfalls CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1355

https://doi.org/10.1007/978-3-319-08344-5_17
https://doi.org/10.1007/978-3-319-08344-5_17
http://eprint.iacr.org/
https://doi.org/10.1007/s00145-013-9167-4
https://doi.org/10.1109/RISP.1992.213269
https://doi.org/10.1109/RISP.1992.213269
https://doi.org/10.1007/978-3-662-46447-2_21

Juan A. Garay and Rosario Gennaro (Eds.), Vol. 8616. Springer, Heidelberg, 408–

425. https://doi.org/10.1007/978-3-662-44371-2_23

[12] Emmanuel Bresson, Olivier Chevassut, David Pointcheval, and Jean-Jacques

Quisquater. 2001. Provably Authenticated Group Diffie-Hellman Key Exchange.

In ACM CCS 01. ACM Press, 255–264.

[13] Emmanuel Bresson, Mark Manulis, and Jörg Schwenk. 2007. On Security Models

and Compilers for Group Key Exchange Protocols. In IWSEC 2007, Nara, Japan,
October 29-31, 2007, Proceedings (Lecture Notes in Computer Science), Atsuko
Miyaji, Hiroaki Kikuchi, and Kai Rannenberg (Eds.), Vol. 4752. Springer, 292–307.

https://doi.org/10.1007/978-3-540-75651-4_20

[14] Christina Brzuska, Mark Fischlin, Nigel P. Smart, Bogdan Warinschi, and

Stephen C. Williams. 2013. Less is More: Relaxed yet Composable Security

Notions for Key Exchange. International Journal of Information Security 12, 4

(August 2013), 267–297. https://doi.org/10.1007/s10207-013-0192-y

[15] Christina Brzuska, Marc Fischlin, Bogdan Warinschi, and Stephen C. Williams.

2011. Composability of Bellare-Rogaway key exchange protocols. In ACM CCS
11, Yan Chen, George Danezis, and Vitaly Shmatikov (Eds.). ACM Press, 51–62.

[16] Christina Brzuska, Nigel P. Smart, Bogdan Warinschi, and Gaven J. Watson.

2013. An analysis of the EMV channel establishment protocol. In ACM CCS
13, Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung (Eds.). ACM Press,

373–386.

[17] Ran Canetti and Hugo Krawczyk. 2001. Analysis of Key-Exchange Protocols

and Their Use for Building Secure Channels. In EUROCRYPT 2001 (LNCS), Birgit
Pfitzmann (Ed.), Vol. 2045. Springer, Heidelberg, 453–474.

[18] Kim-Kwang Raymond Choo and Yvonne Hitchcock. 2005. Security Requirements

for Key Establishment Proof Models: Revisiting Bellare-Rogaway and Jeong-Katz-

Lee Protocols. In ACISP 05 (LNCS), Colin Boyd and Juan Manuel González Nieto

(Eds.), Vol. 3574. Springer, Heidelberg, 429–442.

[19] Cas Cremers. 2011. Examining indistinguishability-based security models for

key exchange protocols: the case of CK, CK-HMQV, and eCK. In ASIACCS 11,
Bruce S. N. Cheung, Lucas Chi Kwong Hui, Ravi S. Sandhu, and Duncan S. Wong

(Eds.). ACM Press, 80–91.

[20] Cas J. F. Cremers and Michele Feltz. 2012. Beyond eCK: Perfect Forward Se-

crecy under Actor Compromise and Ephemeral-Key Reveal. In ESORICS 2012
(LNCS), Sara Foresti, Moti Yung, and Fabio Martinelli (Eds.), Vol. 7459. Springer,

Heidelberg, 734–751.

[21] Yevgeniy Dodis, Eike Kiltz, Krzysztof Pietrzak, and Daniel Wichs. 2012. Message

Authentication, Revisited. In EUROCRYPT 2012 (LNCS), David Pointcheval and

Thomas Johansson (Eds.), Vol. 7237. Springer, Heidelberg, 355–374.

[22] Stefan Dziembowski and Sebastian Faust. 2011. Leakage-Resilient Cryptography

from the Inner-Product Extractor. In ASIACRYPT 2011 (LNCS), Dong Hoon Lee

and Xiaoyun Wang (Eds.), Vol. 7073. Springer, Heidelberg, 702–721.

[23] Dario Fiore and Dominique Schröder. 2012. Uniqueness Is a Different Story:

Impossibility of Verifiable Random Functions from Trapdoor Permutations. In

TCC 2012 (LNCS), Ronald Cramer (Ed.), Vol. 7194. Springer, Heidelberg, 636–653.

[24] Marc Fischlin and Felix Günther. 2014. Multi-Stage Key Exchange and the Case of

Google’s QUIC Protocol. In ACM CCS 14, Gail-Joon Ahn, Moti Yung, and Ninghui

Li (Eds.). ACM Press, 1193–1204.

[25] Oded Goldreich. 2001. The Foundations of Cryptography - Volume 1, Basic Tech-
niques. Cambridge University Press.

[26] Shafi Goldwasser and Silvio Micali. 1984. Probabilistic Encryption. J. Comput.
Syst. Sci. 28, 2 (1984), 270–299.

[27] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. 1984. A “Paradoxical”

Solution to the Signature Problem (Abstract) (Impromptu Talk). In CRYPTO’84
(LNCS), G. R. Blakley and David Chaum (Eds.), Vol. 196. Springer, Heidelberg,

467.

[28] Shafi Goldwasser and Rafail Ostrovsky. 1993. Invariant Signatures and Non-

Interactive Zero-Knowledge Proofs are Equivalent (Extended Abstract). In

CRYPTO’92 (LNCS), Ernest F. Brickell (Ed.), Vol. 740. Springer, Heidelberg, 228–
245.

[29] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. 2012. On the Security

of TLS-DHE in the Standard Model. In CRYPTO 2012 (LNCS), Reihaneh Safavi-

Naini and Ran Canetti (Eds.), Vol. 7417. Springer, Heidelberg, 273–293.

[30] Ik Rae Jeong, Jonathan Katz, and Dong Hoon Lee. 2004. One-Round Protocols for

Two-Party Authenticated Key Exchange. In ACNS 04 (LNCS), Markus Jakobsson,

Moti Yung, and Jianying Zhou (Eds.), Vol. 3089. Springer, Heidelberg, 220–232.

[31] Ik Rae Jeong, Jeong Ok Kwon, and Dong Hoon Lee. 2006. A Diffie-Hellman

Key Exchange Protocol Without Random Oracles. In CANS 06 (LNCS), David
Pointcheval, Yi Mu, and Kefei Chen (Eds.), Vol. 4301. Springer, Heidelberg, 37–54.

[32] Jonathan Katz and Yehuda Lindell. 2007. Introduction to Modern Cryptography.
Chapman and Hall/CRC Press.

[33] Kazukuni Kobara, SeongHan Shin, and Mario Strefler. 2009. Partnership in

key exchange protocols. In ASIACCS 09, Wanqing Li, Willy Susilo, Udaya Kiran

Tupakula, Reihaneh Safavi-Naini, and Vijay Varadharajan (Eds.). ACM Press,

161–170.

[34] Florian Kohlar, Sven Schäge, and Jörg Schwenk. 2013. On the Security of TLS-DH

and TLS-RSA in the Standard Model. Cryptology ePrint Archive, Report 2013/367.

(2013). http://eprint.iacr.org/2013/367.

[35] Hugo Krawczyk. 2005. HMQV: A High-Performance Secure Diffie-Hellman Pro-

tocol. In CRYPTO 2005 (LNCS), Victor Shoup (Ed.), Vol. 3621. Springer, Heidelberg,
546–566.

[36] Hugo Krawczyk, Kenneth G. Paterson, and Hoeteck Wee. 2013. On the Security

of the TLS Protocol: A Systematic Analysis. In CRYPTO 2013, Part I (LNCS),
Ran Canetti and Juan A. Garay (Eds.), Vol. 8042. Springer, Heidelberg, 429–448.

https://doi.org/10.1007/978-3-642-40041-4_24

[37] Brian A. LaMacchia, Kristin Lauter, and Anton Mityagin. 2007. Stronger Security

of Authenticated Key Exchange. In ProvSec 2007 (LNCS), Willy Susilo, Joseph K.

Liu, and Yi Mu (Eds.), Vol. 4784. Springer, Heidelberg, 1–16.

[38] Kristin Lauter and AntonMityagin. 2006. Security Analysis of KEAAuthenticated

Key Exchange Protocol. In PKC 2006 (LNCS), Moti Yung, Yevgeniy Dodis, Aggelos

Kiayias, and Tal Malkin (Eds.), Vol. 3958. Springer, Heidelberg, 378–394.

[39] Augustin P. Sarr, Philippe Elbaz-Vincent, and Jean-Claude Bajard. 2010. A New

Security Model for Authenticated Key Agreement. In SCN 10 (LNCS), Juan A.

Garay and Roberto De Prisco (Eds.), Vol. 6280. Springer, Heidelberg, 219–234.

[40] Sven Schäge Tibor Jager, Florian Kohlar and Jörg Schwenk. 2011. On the Security

of TLS-DHE in the Standard Model. Cryptology ePrint Archive, Report 2011/219.

(2011). http://eprint.iacr.org/2011/219.

A BRIEF OVERVIEW ON SECURITY MODELS
FOR AUTHENTICATED KEY EXCHANGE

With the so-called Bellare-Rogaway model, Bellare and Rogaway

have initiated the rigorous study of cryptographic models for key

agreement protocols in the 1990s. This model has become the basis

for many refined security models (e.g. [7, 29]). In 2001, Canetti

and Krawczyk introduced a new key exchange model [17] – today

known as the CK-model that additionally covers session state rev-

elations but does not require explicit authentication. It reflects a

wide range of practical attacks and has also become very popular.

In 2005, Krawczyk extended this model to also capture key imper-

sonation (KCI) security and weak forward secrecy. The resulting

model is often referred to as CKHMQV, or CK+, or simply the HMQV

model [35]. In 2007, LaMacchia et al. introduced an even further re-

fined model known as the eCK model for the analysis of two-party

key exchange protocols [37]. The eCK model captures the exposure

of ephemeral keys by using a dedicated EphemeralKey-query and

also allows the exposure of ephemeral secret keys of the Test-oracle
and its partner oracle. The eCK model captures a wide variety of

practical attacks and is used in many security proofs. Subsequently,

we will briefly recall the general setup. This is necessary when

illustrating our no-match attacks in Appendix B. In particular, we

stick to the term oracle to describe protocol instances run at a party.

We remark that many of models refer to such instances as sessions.

Let π be a security protocol. Suppose we have a set P1, . . . ,Pn
of honest parties (as potential protocol participants), where each

honest party Pi has a long-term secret ski . We use π si to denote

the s-th instance of a protocol run at a protocol participant Pi .
More intuitively, we will view π si as an oracle of Pi . Each oracle

may either be an initiator or responder type oracle defining which

algorithms it is going to use to respond to incoming messages and

to compute the session key. Moreover, we will assume that each

oracle has an associated session state, including the intermediate

random values used in the computation of the session key. At the

same time, each oracle has access to the long-term secrets of Pi . In
most security models, security is defined in a security game that

is played between an adversary and a challenger. The adversaries

task is to distinguish the key computed by the Test-oracle from a

random key. We assume that the active adversary A is granted

access to Send, Reveal, Corrupt, EphemeralKey and Test-queries.

Session F3: Crypto Pitfalls CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1356

https://doi.org/10.1007/978-3-662-44371-2_23
https://doi.org/10.1007/978-3-540-75651-4_20
https://doi.org/10.1007/s10207-013-0192-y
http://eprint.iacr.org/2013/367
https://doi.org/10.1007/978-3-642-40041-4_24
http://eprint.iacr.org/2011/219

B DETAILED EXAMPLE OF A NO-MATCH
ATTACK

In the following we will in detail illustrate a concrete vulnerable

protocol and a corresponding no-match attack against it. We do

not provide detailed descriptions of the corresponding security

model here. For more information we instead refer to the original

papers. However, we remark that partnering is defined via (partial)

matching conversations.

The SIG(NAXOS) Protocol. For simplicity and concreteness, we

concentrate on the SIG(NAXOS) protocol (Figure 4) that relies on

the protocol compiler of Cremers and Feltz [20] when applied to

the NAXOS protocol [37].

Protocol Description.

• Setup: each party Pc has two independent valid long-term

secret/public key pairs, one key pair for the NAXOS protocol

(pkc = дxc , skc = xc), with c ∈ {i, j}, and one pair (pk
sig
c ,

sk
sig
c) for a randomized and strongly secure digital signature

scheme SIG. Let H1:{0, 1}∗→ Zp and H2:{0, 1}∗→ {0, 1}κ
be two hash functions, where κ is a security parameter.

• Party Pi selects a random number αi
$← Zq , computes Γi =

дH1(αi ,ski)
. Then, Pi computes a signature σi by evaluating

the probabilistic SIG.Sign algorithm under the private key

sk
sig
i with internal random coins ri over input (Γi | |Pj): σi =

SIG.Sign(sksigi , Γi | |Pj). Finally, Pi sends (Γi , σi) to Pj .

• Party Pj behaves similarly: it selects a random number α j
$←

Zq , computes Γj and the signature σj over Γj | |Γi | |Pi , and
sends (Γj , σj) to Pi .
• Computation of session key: Party Pi checks if it holds that:
SIG.Vfy(pksigi , Γj | |Γi | |Pi ,σj) = 1. If the check is passed, Pi
computes the session key via the following equation: Ki, j =

H2(Γskij ,pk
H1(αi ,ski)
j , Γ

H1(αi ,ski)
j , i, j). Accordingly, Party Pj

computes Ki, j = H2(pk
H1(α j ,skj)
i , Γ

skj
i , Γ

H1(α j ,skj)
i , i, j).

No-MatchAttack against the SIG(NAXOS) Protocol. In our no-
match attack described below the adversary A modifies message

σi via queries granted in the KCI security game. Moreover, we

choose π si to be the Test-oracle. (We remark that the protocol is

also susceptible to a no-match attack that, very similarly, exploits

the power of the PFS security game. To this end the attacker can

substitute σj with a fresh signature and use π tj as the Test-oracle.)

• The adversary A makes a Corrupt(Pi)-query and obtains

the long-term private key of party Pi , sk
sig
i .

• According to the protocol specification, Party Pi computes

Γi = д
H1(αi ,ski)

. In the next step, Pi computes a signature σi
with internal random coins ri over Γi | |Pj as follows: σi =
SIG.Sign(sksigi , Γi | |Pj). Finally, Pi sends (Γi , σi) to Pj .
• Since the adversary A controls all communication between

parties it can intercept and delete the message σi generated
by Pi . Then A computes a fresh signature σ ∗ with internal

random coins r∗ (r∗ , ri) such thatσ ∗ = SIG.Sign(sksigi , Γi | |Pj) ,
σi . Finally, A sends (Γi , σ

∗
) to Pj .

• Party Pj behaves in the same way. Pj computes (Γj , σj) and
sends them to Pi .
• Computation of session key: parties Pi and Pj accept and
compute the same session key Ki, j .
• The adversaryA queries Test(π si) and getsKb from π si . Then,

A queries Reveal(π tj) and obtains the session key Ki, j . Note

that according to the definition of partnership π si and π tt
are not partnered since σ ∗ , σi . Now, A can easily check if

Kb = Ki, j .

C ROBUST COMPOSITION
We believe that our new definition of partnering not only fixes the

notion of matching conversations but that it provides a superior

notion of partnering. To further support this argument we isolate a

fundamental problem with matching conversations showing that

protocols secure under this partnering definition cannot provide

what we call robust composition. Roughly, this means that the pro-

tocol cannot be securely composed with independently generated

messages. This culminates in the odd situation that some protocols

may be secure under the matching conversations definitions when

analyzed in isolation but lose all security, when a single random

value is added to the message flow. An illustrative example is the

protocol compiler by Cremers and Feltz [20] (Appendix B) that aims

to increase the security of an input protocol by making it provide

forward secrecy. As detailed in Section 3.2, the resulting protocol is

vulnerable to a no-match attack even if the input protocol is secure

(for example, consider a protocol that relies on unique messages

and primitives only). This shows that the security of protocols ana-

lyzed in the MC-based definition depends on the context they are

used in, even if the context is independent from the protocol– a

theoretically highly unsatisfactory and counter-intuitive feature.

Fortunately, we can show that our new notion of partnering does

not suffer from this fundamental problems.

Definition C.1 (Robust Augmentation). Letπ be a protocol (viewed

as the sequence of its messages). We say that protocol π ′ is a robust
augmentation of π if:

• the protocol messages of π form a subsequence (subproto-

col) of π ′, i.e. π ′ can be computed from π only by adding

messages to the protocol (either via appending new values to

existing messages flows or by adding entirely new messages

flows to the protocol) and

• the session key generated by π ′ is the session key that is

output by the subprotocol π .

Subsequently, we use π ′ − π to denote the additional messages

that π ′ contains besides the messages of π .

Definition C.2 (Weak Robust Composition). We say that a security

model S supports weak robust composition if for all protocols π
and every robust augmentation π ′ of π we have

• the additional messages π ′ − π are computed independently

of those of the protocol π
• if π is secure under S then π ′ is secure under S .

We are now ready to immediately prove the following theorem:

Session F3: Crypto Pitfalls CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1357

SIG(NAXOS) Protocol

π s
i π t

j

pki = дxi , ski = xi , pk
sig
i , sk sigi pkj = дxj , skj = x j , pk

sig
j , sk sigj

αi
$← Zq, Γi = дH1(αi ,ski) α j

$← Zq, Γj = дH1(αj ,skj)

σi = SIG.Sign(sk sigi , Γi | |Pj) σj = SIG.Sign(sk sigj , Γj | |Γi | |Pi)

Γi , σi

Γj , σj

accept if accept if

SIG.Vfy(pk sigj , Γj | |Γi | |Pi , σj) = 1 SIG.Vfy(pk sigi , Γi | |Pj , σi) = 1

Ki, j = H2(Γskij , pkH1(αi ,ski)
j , Γ

H1(αi ,ski)
j , i, j) Ki, j = H2(pk

H1(αj ,skj)
i , Γ

skj
i , Γ

H1(αj ,skj)
i , i, j)

Figure 4: Description of the SIG(NAXOS) Protocol

Theorem C.3. Any exploitable security model S that defines part-
nering via matching conversations cannot support weak robust com-
position.

Proof. Consider a protocol π that is secure under S . Let π ′ be a
robust augmentation of π that only adds a single random bitb to the
first message of the protocol. Then there exists an adversary that

can easily launch a no-match attack against π ′. All she has to do is to
slightly modify the messages sent between two oracles by inverting

the bit b in the first protocol message. Obviously, the oracles do not

have matching conversations, but they have computed the same

session key. This is a no-match attack and since S is exploitable

breaks the security of π ′. □

This negative result on the composability of protocols under

weak robust composition covers not only security models formal-

izing key indistinguishability but also those that define explicit

authentication. Solely the mechanism to exploit the security model

is different. In contrast to weak robust composition, our next defi-

nition also allows the additional messages to be derived from the

public messages of protocol π .

Definition C.4 (Strong Robust Composition). We say that a security

model S supports strong robust composition if for all protocols π
and every robust augmentation π ′ of π we have that

• the additional messages π ′ − π can be efficiently computed

from the messages of the subprotocol π (that have already

been sent)

• if π secure under S then π ′ is secure under S .

Theorem C.5. Let S be a security model for key exchange protocols
that defines security via key indistinguishability and partnering via
original key partnering. Then S supports strong robust composition.

Proof. We can simply reduce security of π ′ to the protocol π .
To this end we assume a simulator that is given protocol π as a

black-box. It simulates the protocol π ′ by efficiently computing all

necessary messages in π ′ − π from the subprotocol π which by

definition is possible. Observe that the definition of partnering in π ′

corresponds to the definition of partnering in π , i.e. whenever two
oracles are partnered with respect to π ′, they are also partnered

with respect to the (black-box) subprotocol π and vice versa. Now,

any successful adversary against π ′ can by definition distinguish

the session key of π ′ from a random value. Since the session key

of π ′ is essentially that of π and since the partnering definition in

π ′ corresponds to that of π we can directly use the the adversary’s

guess to break the security of π . We note that we can simulate all

queries made by the adversary against π ′ by using the queries for π
and since the additional messages can all be computed solely from

π . □

As a result, no adversary can augment the protocol with ad-

ditional messages in a way that makes it insecure. From another

perspective, the protocol remains secure in contexts where not only

the protocol messages but also other messages are exchanged as

long as the additional messages do not rely on the secret informa-

tion of the protocol.

We can also provide a positive result for key exchange models

based on explicit authentication.

Theorem C.6. Let S be a security model for key exchange proto-
cols that defines security via explicit authentication in the sense of
Definition 5.2. Then S supports strong robust composition.

We can almost re-use the proof of Theorem C.5 and therefore

omit it.

Session F3: Crypto Pitfalls CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1358

D EXAMPLE PROTOCOL AND PROOF
SKETCH

To get a better understanding of what impact our new partnering

definition has on security proofs that are usually based on matching

conversations let us consider an example. In particular consider a

protocol where Alice and Bob have long-term signature keys for

signature scheme SIG. Alice sends the ephemeral public key дa ,

Bob responds with дb , sB where sB = SIG.Sign(skB , (дa |дb)) and
the symbol | indicates a special separator symbol. Alice checks if

it holds that SIG.Vfy(pkB , (дa |дb), sB) = 1. On success it computes

kA = (дb)a and sends sA with sA = SIG.Sign(skA, (дa |дb)) to Bob

who in turn checks whether SIG.Vfy(pkA, (дa |дb), sA) = 1. In case

the verification of the received signature is positive, Bob computes

kB = (дb)a .
Let us now sketch a security proof that relies on original key

partnering and contrast it with matching conversations. To this

end we dive into the Test-session. After excluding collisions when

choosing ephemeral public keys we can distinguish several cases:

1) First, we consider the case that the attacker does not make

any modifications to the exchanged messages. In this case security

follows form the security of the DDH assumption. Namely in one

session, the challenger embeds a DDH challenge in дa and дb . The
key is indistinguishable from random by the DDH assumption

which says that given д,дa ,дb , the value дab is indistinguishable

from дt for a random t .
2) In the second case we always (only) consider (active) attacks

that make Alice or Bob not compute their original key. For the

protocol at hand, we consider either a) attackers that modify any

of the messages дa or дb on transit such that one of the computed

keys is distinct from the original key or b) we consider attacks

that modify the signatures so that any of them becomes invalid

(resulting in no computation of a session key of the receiving oracle

at all.). In case a) we can use such an attacker to break the security

of the signature schemes. This is because any attacker that modifies

any of those two message has to produce a valid signature on the

message (which includes fresh ephemeral public keys) as well to

make the receiver accept it and generate a key. Using the signature

oracle in the security game we can easily simulate all other sessions.

In contrast, analyzing case b) is actually not necessary in a formal

proof and we include it only for illustrative purposes. In fact, the

security definition requires that the Test-oracle has computed a key.

Moreover if Bob’s oracle does not compute a key at all, this only

increases the security for Alice’s oracle: Bob’s oracle does not store

any information that may help to distinguish Alice’s key.

3) The third case is also only considered as an illustrative argu-

ment for the purpose of this paper. In actual security proofs using

original key partnering it would not appear. In this case the attacker

modifies any message such that as a result Alice and Bob compute

their original key. One attack is to modify the signatures sA or sB
such that as a result, the verification is still positive. (Another way

would be to change the representation of the ephemeral public key

for example to send дa −p instead of дa in case < д > is a subgroup

of Z∗p . This works if the signature scheme works on messages in

< д > but does not apply an interval test, see Section E.1.) Here

the difference of our security notion with respect to matching con-

versations comes into play: with matching conversations the two

oracles would not be partnered although they both compute the

same session key. That would allow for an exploitable no-match

attack – revealing Bob’s session key would trivially help to dis-

tinguish Alice’s key from random. Using original key partnering

the two oracles remain to be partnered even if the signatures are

modified since both oracles compute their original key. Importantly,

observe that this is crucial when analyzing KCI attacks and perfect

forward secrecy. In these cases the attacker has access to skA before

Alice’s last message arrives at Bob and the attacker can thus easily

compute a new signature s ′A = SIG.Sign(skA, (дa |дb)) that Bob will
accept. So in sum security defined under matching conversations

would fail to reason about this protocol under these strong AKE

definitions. Even worse, the protocol could not be proven secure

unless the signature scheme fulfills the notion of strong unforge-

ability even when not considering KCI attacks or perfect forward

secrecy, i.e. when proving classical key indistinguishability. How-

ever, under our new notion, the protocol can be proven secure in

even this strong model. Intuitively, this is legitimate since Alice

and Bob compute the same key that would be computed in case of

no modification at all (case 1).

E DESIGN SOLUTIONS
In the following, we propose two approaches to armor protocols

against no-match attacks.

E.1 Uniqueness
Having ruled out the usefulness of deterministically computed

valuesv to prevent no-match attacks in general and strong security

for no-match attacks with advice in particular, the open question

is what properties of the algorithms that compute v are required

to actually thwart no-match attacks. What we want is that the

adversarymay not present a distinct v ′ that behaves like the original
v independent of whether the adversary has access to the secret key or
not. This can be captured by the notion of uniqueness. For example,

in a unique signature scheme, for every public key, there is only

one signature per message that passes the signature verification.

Our definition captures general verification functions.

Definition E.1 (Unique Verification). A verification algorithm VRF
defined over (K ,M, V , Xaux) is an efficient algorithm VRF: K
× M × V × Xaux → {0, 1} described as a deterministic Turing

Machine. The setK is called the key space,M is called the message

space,V = {0, 1}∗ is called the verification space andXaux is called

the auxiliary information space (which may possibly be empty).

We say that VRF provides unique verification if for all k ∈ K , all
messagesm ∈ M and all aux ∈ Xaux we always have that

|{v ∈ V|VRF(k,m,v, aux) = 1}| ≤ 1.

In the above definition we generally consider algorithms that

are keyed with some key k . Depending on the primitive this key

can be a symmetric, public, or secret key.

We clarify that the definitions of deterministic signatures and

unique signatures concentrate on properties of distinct algorithms.

Whereas a deterministic signature scheme refers to a signature

scheme with a deterministic signing algorithm, unique signatures

refer to signature schemes whose verification algorithm meets the

uniqueness property.

Session F3: Crypto Pitfalls CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1359

In the next step, we may explore ways to substitute crypto-

graphic primitives with unique versions. This has the advantage

that protocol implementations where the primitives can be agreed

upon by the communication partners can remain secure under

matching conversations without any protocol modification just

via a suitable instantiation of the primitive. Important results on

common building blocks for security protocols show that while it is

relative simple to obtain unique MACs (and unique symmetric en-

cryption).
15
, it is much more difficult to construct unique signatures

(than non-unique ones)
16
. For public key encryption in contrast, it

is impossible to do so since evenmere IND-CPA encryption requires

the scheme to be probabilistic [26].

E.2 Unique Message Representations and
Group Membership Testing.

We observe that, as a consequence of our no-match attacks and

unless other means do not protect protocols against them, parties

should generally use unique representations of all messages. Of

course, not only need the protocol participants use a unique set of

representations but they also have to check whether the received

values actually belong to this set. This is particularly important

for group membership tests that are implemented as simple ex-

ponentiation. Popular ways for Bob to check if Alice’s message a
is in a subgroup of prime order q is to check if aq = 1 mod p or

ar , 1 mod p where r = |Z∗p |/q is the co-factor. These checks are

often called ephemeral public key validation.
We remark that mere ephemeral public key validation is not

sufficient to protect the protocol against no-match attacks since any

adversary can easily sent a′ = a + p , a (over the integers) instead

of a to Bob and Bob will accept both values since a′ = a mod p.
The problem is that ephemeral public key validation as sketched

above does not check for uniqueness. However, if Bob always checks

if 0 ≤ a ≤ p−1 then it would not accept a′ and our no-match attack

is thwarted. We call this additional check interval test.
Also observe that in case a = дx mod p is Alice’s ephemeral key

that Bob combines with his ephemeral secret keyy ∈ Zq to compute

a common secret ay mod p, we have that a′y mod p = ay mod p
although a , a′. So the common secrets computed from a,y and

a′,y are equal. The substitution of a by a′ can be combined with a

no-match attack with advice which helps the adversary to substi-

tute a signature on a with one of a′. Note that the resulting attack

would still work if the signature scheme offers unique verification!

(We believe that such a combination is very hard to spot in a secu-

rity proof. At the same time it further exemplifies the diversity of

no-match attacks.) The resulting attack can be used to break the

NAXOS protocol [37] or the KEA+ protocol that was published at

PKC’06 [38] if these protocols do not apply an interval test because
the final session key is not derived from a but only from ay mod p.
Finally, a similar attack can be launched against a proposal to in-

stantiate the symmetric encryption system in [5] by encrypting

15
If necessary use a PRF on the message and some secret symmetric key to derive the

input randomness and make the scheme deterministic. To make the scheme unique,
modify the verification procedure to just re-run the tagging (or encryption) algorithm

and check for equality with the received value. In this way only a single value will be

accepted.

16
While plain digital signatures can be constructed from one-way functions only,

unique signatures require even more than ideal trapdoor permutations [23, 28].

messagem with password pw as c = h(pw) ·m, where h is a hash

function that is modeled as a random oracle and the arithmetic is

in the underlying group. When for example implemented over a

subgroup of Z∗p and not applying an interval test it is easy to come

up with a second string that when decrypted maps to the same

message using the above technique.

We emphasize that these papers, like most papers on key ex-

change protocols, are unclear on how they implement group mem-

bership tests exactly. Our no-match attacks convincingly show that

mere ephemeral key validation is in some scenarios not sufficient.

E.3 Protocol Compiler
As a third solution we propose the following efficient transforma-

tion that makes the computation of the session key critically depend

on any message bit of the transcript. Assume we have a t-move key

exchange protocol π that is executed between Alice and Bob. Let us

now describe a new key exchange protocol π ′ that is constructed

from π and a hash function H. Let m(i)j for i ∈ N, t ≥ i ≥ 1 be

the i-th message sent or received by party j ∈ {A,B}. Suppose
H : {0, 1}∗ → {0, 1}l is a hash function which is modeled as a ran-

dom oracle in the security proof. Let Kj be the final session key that

is output by j ∈ {A,B}. In our compiler, each party j will maintain

a (small) state variable c j that is updated after each protocol move.

We now describe how each party j can recursively compute the

final state c
(t)
j that in turn is used to compute the session key Kj .

• Define c
(0)
j to some global constant c .

• For each sent or received messagem
(i)
j computes the value

c
(i)
j = H(c(i−1)j ,m

(i)
j).

• The session key is computed as K∗j = H(c(t)j ,Kj).
The advantage of our compiler is its generality. In particular, it

does not require the protocol to fulfill any security requirements

and excludes no-match attacks – even for insecure protocols (with

overwhelming probability). This is because any modification made

to the messages exchanged between two oracles results in distinct

inputs to the final random oracle call. The following lemma captures

this intuition.

Lemma E.2. Assume that in the run of a key exchange protocol
the adversary launches an active attack on the modified protocol π ′

executed between two oracles. Then, with overwhelming probability
1 − 2−l , the two oracles do not compute the same session key K∗.

Proof. Each modification will make Bob’s oracle receive at least

one message that is distinct from what Alice’s oracle has sent (or

vice versa). Now the output of the corresponding random oracle

call is random and independent from the output produced by Alice.

Because of the continual feedback of previous values into the next

call of the random oracle the session keys are independent and

random as well. So they differ with all but negligible probability

1 − 2−l . □

As an advantage, the above compiler is computationally very

efficient. However, it does modify the key derivation function of

the protocol.

Session F3: Crypto Pitfalls CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1360

	Abstract
	1 Introduction
	1.1 Contribution
	1.2 Related Work
	1.3 Open Problems
	1.4 A Note on Formalism
	1.5 Overview

	2 No-Match Attacks
	2.1 Warm-Up: No-Match Attacks without Advice
	2.2 No-Match Attacks with Advice
	2.3 Exploiting No-Match Attacks and Scope
	2.4 Strong Security and Deterministic Computation of v

	3 No-Match Attacks on Existing Protocols
	3.1 Integrity Protection – MACs
	3.2 Authentication via Digital Signatures
	3.3 Authentication via Public Key Encryption
	3.4 The BPR Framework (EC'00)
	3.5 Further Primitives

	4 Novel Definitions of Partnering
	4.1 Robust Matching Conversations
	4.2 Original Key Partnering
	4.3 Partnering via Mere Key Comparison is Not Sufficient
	4.4 Public vs. Secret Partnering
	4.5 Robust Composition

	5 No-Match Attacks and Explicit Authentication
	5.1 Decoupling Explicit Authentication and Matching Conversations
	5.2 Explicit Authentication and Original Key Partnering

	6 Strengthening Security Definitions
	7 Further Relaxations and Obstacles
	References
	A Brief Overview on Security Models for Authenticated Key Exchange
	B Detailed Example of a No-Match Attack
	C Robust Composition
	D Example Protocol and Proof Sketch
	E Design Solutions
	E.1 Uniqueness
	E.2 Unique Message Representations and Group Membership Testing.
	E.3 Protocol Compiler

