
Practical Multi-party Private Set Intersection from
Symmetric-Key Techniques

Vladimir Kolesnikov

Bell Labs

Murray Hill, New Jersey, USA

vladimir.kolesnikov@nokia-bell-labs.

com

Naor Matania

Bar-Ilan University

Tel Aviv, Israel

naorm1991@gmail.com

Benny Pinkas

Bar-Ilan University

Tel Aviv, Israel

benny@pinkas.net

Mike Rosulek

Oregon State University

Corvallis, Oregon, USA

rosulekm@oregonstate.edu

Ni Trieu

Oregon State University

Corvallis, Oregon, USA

trieun@oregonstate.edu

ABSTRACT
We present a new paradigm for multi-party private set intersection

(PSI) that allows n parties to compute the intersection of their

datasets without revealing any additional information. We explore

a variety of instantiations of this paradigm. Our protocols avoid

computationally expensive public-key operations and are secure

in the presence of any number of semi-honest participants (i.e.,

without an honest majority).

We demonstrate the practicality of our protocols with an imple-

mentation. To the best of our knowledge, this is the first implemen-

tation of a multi-party PSI protocol. For 5 parties with data-sets of

2
20

items each, our protocol requires only 72 seconds. In an opti-

mization achieving a slightly weaker variant of security (augmented

semi-honest model), the same task requires only 22 seconds.

The technical core of our protocol is oblivious evaluation of a

programmable pseudorandom function (OPPRF), which we instanti-
ate in three different ways. We believe our new OPPRF abstraction

and constructions may be of independent interest.

CCS CONCEPTS
• Theory of computation→Cryptographic protocols; • Secu-
rity and privacy→ Privacy protections; Cryptography; Symmetric

cryptography and hash functions;

KEYWORDS
Private Set Intersection; Oblivious PRF; Secure Multiparty Compu-

tation

1 INTRODUCTION
In the problem of private set intersection (PSI), several parties each

hold a set of items and wish to learn the intersection of these sets

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’17, October 30-November 3, 2017, Dallas, TX, USA
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00

https://doi.org/10.1145/3133956.3134065

and nothing else. Today, two-party PSI is a truly practical prim-

itive, with extremely fast cryptographically secure implementa-

tions [26, 38, 40]. Incredibly, these implementations are only a small

factor slower than the naïve and insecure method of exchanging

hashed values. Among the specific functions of interest in secure

multiparty computation (MPC), PSI is probably one of the most

strongly motivated by practice. Indeed, already today companies

such as Facebook routinely use PSI to share and mine shared in-

formation [34, 52]. In 2012, (at least some of) this sharing was

performed with insecure naïve hashing, where players send and

compare hashes of their set elements. Today, companies are able

and willing to tolerate a reasonable performance penalty, with the

goal of achieving stronger security [52]. We believe that the ubiq-

uity and the scale of private data sharing, and PSI in particular, will

continue to grow as big data becomes bigger and privacy becomes

a more recognized issue. We refer reader to [38–40] for additional

discussion and motivation of PSI.

In our work, we consider multi-party PSI in the semi-honest

model. By “multi-party” we refer to cases where more than two par-

ties wish to compute the intersection of their private data sets. This

is a natural generalization of the practically very useful two-party

PSI, creating opportunities for much richer data sharing than what

was possible with two-party PSI. Consider, for example, a scenario

where several organizations, e.g., Facebook, an advertiser, and a

third-party data provider, wish to combine their data to find a target

audience for an ad campaign. As another application, consider a

set of enterprises which have private audit logs of connections to

their corporate networks, and wish to identify similar activities in

all networks.

We note that the multi-party setting in secure computation is

notoriously difficult to tackle. Existing protocols in generic MPC,

such as garbled circuits, are significantly more complex and costly

in the multi-party case compared to the two-party case. Quite sur-

prisingly, each player in our protocols expend effort similar to that

in the two-party case.

1.1 State of the Art for Two-Party PSI
We focus on the discussion of the state-of-the-art of semi-honest PSI

protocols. We note that the earliest PSI protocols, based on Diffie-

Hellman assumptions, can be traced back to the 1980s [19, 30, 47],

and refer the reader to [39] for an overview of the many different

Session F1: Private Set Intersection CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1257

https://doi.org/10.1145/3133956.3134065

protocol paradigms for PSI. Protocols based on oblivious transfer

extension have proven to be the fastest in practice. We note that

the OT-based protocols do not have the lowest communication cost.

In settings where computation is not a factor, but communication

is at a premium, the best protocols are in [5, 23, 41]. In the semi-

honest version of these protocols, each party sends only 2n group

elements, where n is the number of items in each set. However,

these protocols require a number of exponentiations proportional

to the number of items, making their performance slow in practice.

Concretely, [38] found Diffie-Hellman-based protocols to be over

200× slower than the OT-based ones.

Current state-of-the-art semi-honest PSI protocols in the two-

party setting are [26, 40]. They both use bucketing to reduce the

number of comparisons, and rely on oblivious PRF evaluation. Until

our work, these ideas were not used in PSI protocols for the multi-

party case.

Most work on concretely efficient PSI is in the random oracle

model, andwith security against semi-honest, rather thanmalicious,

adversaries. Some notable exceptions are [12, 16, 20] in the standard

model, and [7, 8, 10, 12, 37, 44, 45] with security against malicious

adversaries.

Lastly, we note that there are efficient constructions for generic

MPC [2, 25, 27, 29, 32, 43, 49–51], which can be used for implement-

ing any functionality. In particular, these protocols can be used for

securely implementing PSI, in either the two-party or multi-party

settings. However, circuits for computing PSI are relatively large.

A natural circuit for two-party PSI performs 𝒪(n2) comparisons,

whereas more efficient circuits are of size 𝒪(n logn) [18, 40]. How-
ever, as demonstrated in [40], secure evaluation of these circuits is

about two orders of magnitude slower than the most efficient PSI

protocols.

1.2 State of the Art for Multi-party PSI
A multi-party PSI protocol was first proposed by Freedman, Nissim,

and Pinkas [12]. The protocol of [12] is based on oblivious poly-

nomial evaluation (OPE) which is implemented using additively

homomorphic encryption, such as Paillier encryption scheme. The

basic idea is to represent a dataset as a polynomial whose roots are

its elements, and send homomorphic encryptions of the coefficients

of this protocol to obliviously evaluate it on the other party’s inputs.

Relying on the OPE technique, Kissner and Song [24] proposed a

multi-party PSI protocol with quadratic computation and commu-

nication complexity in both the size of dataset and the number

of parties. The computation overhead is reduced to be linear in

number of participants in [46], which was based on bilinear groups.

Furthermore, an efficient solution with quasi-linear complexity in

the size of dataset is proposed in [6]. In both [6, 46], the maximum

number of the corrupted parties are assumed to be n/2. Very recent
work [17] describes new protocols which run over a star network

topology, and are secure in the standard model against either semi-

honest or malicious adversaries. The basic idea is to designate one

party to run a version of the protocol of [12] with all other par-

ties. The main building block in [17] is an additively homomorphic

public-key encryption scheme, with threshold decryption, whose

key is mutually generated by the parties. The protocol requires com-

puting a linear number of encryptions and decryptions (namely,

exponentiations) in the input sets. In contrast, our main building

block is based on Oblivious Transfer extensions where the number

of exponentiations does not depend on the size of the dataset. [17]

does not include implementation, but we expect that our protocols

are much faster due to building from symmetric primitives. We de-

scribe the performance of representative multi-party PSI protocols

in the semi-honest settings in Table 1.

We mention that multi-party PSI was also investigated in the

server-aided model, based on the existence of a server which does

not collude with clients [1, 31]. Information-theoretic PSI protocols,

possible in the multi-party setting, are considered in [3, 28, 36].

1.3 Our Contributions
We design a modular approach for multi-party PSI that is secure

against an arbitrary number of colluding semi-honest parties. Our

approach can be instantiated in a number of ways providing trade-

offs for security guarantees and computation and communication

costs.

We implemented several instantiations of our PSI approach. To

our knowledge, this is the first implementation of multi-party PSI.

We find that multi-party PSI is practical, for sets with a million items

held by around 15 parties, and even for larger instances. The main

reason for our protocol’s high performance is its reliance on fast

symmetric-key primitives. This is in contrast with prior multi-party

PSI protocols, which require expensive public-key operations for

each item. Our implementation will be made available on GitHub.

Our PSI Approach. The main building block of our protocol,

which we believe to be of independent interest, is oblivious, pro-
grammable PRF (OPPRF). Recall, oblivious PRF (OPRF) is a 2-party
protocol in which the sender learns a PRF key k and the receiver

learns F (k, r), where F is a PRF and r is the receiver’s input. In

an OPPRF, the PRF F further allows the sender to “program” the

output of F on a limited number of inputs. The receiver learns the

PRF output as before, but, importantly, does not learn whether his

input was one on which the PRF was programmed by the sender.

We propose three OPPRF constructions, with different tradeoffs in

communication, computation, and the number of points that can

be programmed.

Basic idea. Our PSI protocol consists of two major phases. First,

in the conditional zero-sharing phase, the parties collectively
and securely generate additive sharings of zero, as follows. Each

party Pi obtains, for each of its items x j , a share of zero, denoted

sij . It holds that
∑n
i=1 s

i
j = 0. Namely, if all parties have x j in their

sets then the sum of their obtained shares is zero (else, w.h.p., the

sum is non-zero). In the second phase, parties perform conditional
reconstruction of their shares. The idea is for each Pi to program

an instance of OPPRF to output its share sij when evaluated on input

x j . Intuitively, if all parties evaluate the corresponding OPPRFs on

the same value x j , then the sum of the OPPRF outputs is zero. This

signals that x j is in the intersection. Otherwise, the shares sum to

a random value.

This brief overview ignoresmany important concerns — in partic-

ular, how the parties coordinate shares and items without revealing

the identity of the items. We propose several ways to realize each

Session F1: Private Set Intersection CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1258

Protocol

Communication Computation Corruption Security

Leader Client Leader Client Threshold Model

[24] 𝒪(tnm log(|X |))λ 𝒪(ntm2) n − 1 semi-honest

[6] 𝒪((n2m + nm)λ) 𝒪(nm +m) ⌊n/2⌋ semi-honest

[17] 𝒪(nmλ) 𝒪(mλ) 𝒪(mn log
2
(m)) 𝒪(m) n − 1 semi-honest

Ours 𝒪(nmλ)
𝒪(mλ) 𝒪(nκ) 𝒪(κ)

n − 1
augmented semi-honest

𝒪(mtλ) 𝒪(tκ) semi-honest

Table 1: Communication (bits) and computation (number of exponentiations) complexities of multi-party PSI protocols in the
semi-honest setting, where n is number of parties, t dishonestly colluding, each with set size m; X is the domain of the ele-
ment; and λ and κ are the statistical and computational security parameters, respectively. In our protocols, the computational
complexities are in an offline preprocessing phase.

of the two PSI phases, resulting in a suite of many possible instan-

tiations. We then discuss the strengths and weaknesses of different

instantiations.

A more detailed overview of the approach and the two phases is

presented in Section 5, prior to the presentation of the full protocol.

2 PRELIMINARIES
2.1 Secure Computation
The security of a secure multi-party protocol is formally defined

by comparing the distribution of the outputs of all parties in the

execution of the protocol π to an ideal model where a trusted third

party is given the inputs from the parties, computes f and returns

the outputs. The idea is that if it is possible to simulate the view

of the adversary in the real execution of the protocol, given only

its view in the ideal model (when it only sees its input and output),

then the adversary cannot do in the real execution anything that is

impossible in the ideal model, and hence the protocol is said to be

secure.

We work in the multi-party setting where the corrupt parties

collude. This is modeled by considering a single monolithic adver-

sary that obtains the views of all corrupt parties. The protocol is

secure if the joint distribution of those views can be simulated.

Functionalities. We define a particular secure computation

task by formally describing the behavior of the ideal functionality

(trusted third party). The ideal functionality for multi-party PSI is

given in Figure 1.

Augmented semi-honest model.Wepresent an optimized vari-

ant of our protocols that is in a slightly weaker security model. In

the augmented semi-honest model the adversary is allowed to

change the inputs of corrupted parties (but thereafter run the pro-

tocol honestly on those inputs).

In the specific case of multi-party PSI, this additional power is

relatively harmless. One can think of amulti-party PSI as computing

XH ∩XC , whereXH is the intersection of all honest parties’ sets and

XC is the intersection of all corrupt parties’ sets. The augmented

semi-honest model simply allows an adversary to chooseXC , rather
than being bound to whatever XC was chosen by the environment.

Without loss of generality, an augmented semi-honest adversary

can simply set all corrupt parties to have the same input set XC .
We note that the augmented semi-honestmodel is well known [14,

16] and was used in previous work on multi-party PSI and related

functionalities [12, 13]. We define and discuss this security notion

at length in Appendix A.

2.2 Cuckoo Hashing
We review the basics of Cuckoo hashing [35], specifically the vari-

ant of Cuckoo hashing that involves a stash [22]. In basic Cuckoo

hashing, there arem bins, a stash, and several random hash func-

tions h1, . . . ,hk (often k = 2), each with range [m]. The invariant
is that any item x stored in the Cuckoo hash table is stored either

in the stash or (preferably) in one of the bins {h1(x), . . . ,hk (x)}.
Each non-stash bin holds at most one item. To insert and element

x into a Cuckoo hash table, we place it in bin hi (x), if this bin is

empty for any i . Otherwise, choose a random i ∈R [k], place x in

bin hi (x), evict the item currently in hi (x), and recursively insert

the evicted item. After a fixed number of evictions, give up and

place the current item in the stash.

3 PROGRAMMABLE OPRF
Our PSI approach builds heavily on the concept of oblivious PRFs

(OPRF). We review the concepts here and also introduce our novel

programmable variant of an OPRF.

3.1 Definitions
Oblivious PRF. An oblivious PRF (OPRF) [11] is a 2-party pro-

tocol in which the sender learns a PRF key k and the receiver learns

F (k,q1), . . . , F (k,qt), where F is a PRF and (q1, . . . ,qt) are inputs
chosen by the receiver. Note that we are considering a variant of

OPRF where the receiver can obtain several PRF outputs on stati-

cally chosen inputs. We describe the ideal functionality for an OPRF

in Figure 2.

Instantiation and Security Details.While many OPRF proto-

cols exist, we focus on the protocol of Kolesnikov et al. [26]. This

protocol has the advantage of being based on oblivious-transfer

(OT) extension. As a result, it uses only inexpensive symmetric-key

cryptographic operations (apart from a constant number of initial

public-key operations for base OTs). The protocol efficiently gener-

ates a large number of OPRF instances, which makes it a particu-

larly good fit for our eventual PSI application that uses many OPRF

instances. Concretely, the amortized cost of each OPRF instance

costs roughly 500 bits in communication and a few symmetric-key

operations.

Technically speaking, the protocol of [26] achieves a slightly

weaker variant of OPRF than what we have defined in Figure 2. In

particular, (1) PRF instances are are generated with related keys,
and (2) the protocol reveals slightly more than just the PRF output

F (k,q). We stress that in the resulting PRF of [26] the construction

Session F1: Private Set Intersection CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1259

Parameters: The number of partiesn, and the size of the parties’
setsm.

Functionality:

• Wait for an inputXi = {x
1

i , . . . ,x
m
i } ⊆ {0, 1}

∗
from each

party Pi .

• Give output

n⋂
i=1

Xi to all parties.

Figure 1: PSI ideal functionality.

Parameters: A PRF F and bound t .

Behavior: Wait for input (q1, . . . ,qt) from the receiverℛ. Sam-

ple a random PRF seed k and give it to the sender 𝒮 . Give
(F (k,q1), . . . , F (k,qt)) to the receiver.

Figure 2: The OPRF ideal functionality ℱ F ,t
oprf

Parameters: A programmable PRF F , and upper bound n on

the number of points to be programmed, and bound t on the

number of queries.

Behavior: Wait for input 𝒫 from the sender 𝒮
and input (q1, . . . ,qt) from the receiver ℛ, where

𝒫 = {(x1,y1), . . . , (xn ,yn)} is a set of points. Run

(k, hint) ← KeyGen(𝒫) and give (k, hint) to the sender.

Give (hint, F (k, hint,q1), . . . , F (k, hint,qt)) to the receiver.

Figure 3: The OPPRF ideal functionality ℱ F ,t,n
opprf

remains secure even under these restrictions. More formally, let

leak(k,q) denote the extra information that the protocol leaks to

the receiver. [26] gives a security definition for PRF that captures

the fact that outputs of F , under related keys k1, . . . ,kn , are pseu-
dorandom even given leak(ki ,qi). Our OPPRF constructions are

built on this OPRF, and as a result our constructions would inherit

analogous properties as well.

For ease of presentation and reasoning, we work with the cleaner

security definitions that capture the main spirit of programmable

OPRF. We emphasize that, although cumbersome, it is possible to

incorporate all of the [26] relaxations into the definitions. We stress

that our eventual application of PSI is secure in the standard sense
when built from such relaxed OP[P]RF building blocks.

Programmable PRF.We introduce a newnotion of a programmable

oblivious PRF. Intuitively, the functionality is similar to OPRF, with

the additional feature that it allows the sender to program the

output of the PRF on a set of points chosen by the sender. Before

presenting the definition of this functionality, we discuss a PRF that

supports being programmed in this way.

A programmable PRF consists of the following algorithms:

• KeyGen(1κ ,𝒫) → (k, hint): Given a security parameter and

set of points 𝒫 = {(x1,y1), . . . , (xn ,yn)} with distinct xi -
values, generates a PRF key k and (public) auxiliary informa-

tion hint. We often omit the security parameter argument

when it is clear from context.

• F (k, hint,x) → y: Evaluates the PRF on input x , giving out-
put y. We let r denote the length of y.

A programmable PRF satisfies correctness if (x ,y) ∈ 𝒫 , and

(k, hint) ← KeyGen(𝒫), then F (k, hint,x) = y. For the security

guarantee, we consider the following experiment/game:

Exp𝒜(X ,Q,κ):
for each xi ∈ X , chose random yi ← {0, 1}

r

(k, hint) ← KeyGen(1κ , {(xi ,yi) | xi ∈ X })

return 𝒜
(
hint, {F (k, hint,q) | q ∈ Q}

)
We say that a programmable PRF is (n, t)-secure if for all |X1 | =

|X2 | = n, all |Q | = t , and all polynomial-time 𝒜:��� Pr[Exp𝒜(X1,Q,κ) ⇒ 1] − Pr[Exp𝒜(X2,Q,κ) ⇒ 1]

���
is negligible in κ

Intuitively, it is hard to tell what the set of programmed points

was, given the hint and t outputs of the PRF, if the points were

programmed to random outputs. Note that this definition implies

that unprogrammed PRF outputs (i.e., those not set by the input to

KeyGen) are pseudorandom.

The reason for including a separate “hint” as part of the syntax

is that our protocol constructions will naturally leak this hint to

the receiver (in addition to the receiver’s PRF output). We propose

a definition that explicitly models this leakage and ensures that it

is safe.

Oblivious Programmable PRF (OPPRF). The formal defini-

tion of an oblivious programmable PRF (OPPRF) functionality is

given in Figure 3. It is similar to the plain OPRF functionality except

that (1) it allows the sender to initially provide a set of points 𝒫
which will be programmed into the PRF; (2) it additionally gives

the “hint” value to the receiver.

We now give several constructions of an OPPRF, with different

tradeoffs in parameters.

3.2 A Construction Based on Polynomials
Our polynomial-based construction is presented in Figure 4. We

first describe the underlying programmable PRF. Let F be a PRF

and define our new programmable PRF F̂ as follows:

• KeyGen(𝒫 = {(x1,y1), . . . , (xn ,yn)}): Choose a random key

k for F . Interpolate a degreen−1 polynomialp over the points
{(x1,y1 ⊕ F (k,x1)), . . . , (xn ,yn ⊕ F (k,xn))}. Let hint be the
coefficients of p.

• F̂ (k, hint,q) = F (k,q) ⊕ p(q).

It is not hard to see that F̂ satisfies correctness since for xi ∈ 𝒫
it holds that F̂ (k, hint,xi) = F (k,xi) ⊕ p(xi) = F (k,xi) ⊕ yi ⊕
F (k,xi). Security follows from the fact that when the yi values are
distributed uniformly, so is the hint p. This is true regardless of the
number of queries the receiver makes.

Finally, theOPPRF protocol for F̂ is straightforward if there is an

OPRF protocol for F : the parties simply invokeℱ F ,t
oprf on their inputs.

The sender obtains k and uses it to generate the hint as above,
and sends it to the receiver. The receiver, obtaining F (k,qi) from

ℱ F ,t
oprf, can compute its output F̂ (k, hint,qi) = F (k,qi) ⊕ p(qi). The

description of the OPPRF protocol is given in Figure 4. Simulation

is trivial, as the parties’ views in the protocol are exactly theOPPRF
output.

Session F1: Private Set Intersection CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1260

Input of 𝒮 : n points 𝒫 = {(x1,y1), . . . , (xn ,yn)}, where xi ∈
{0, 1}∗, xi , x j ; and yi ∈ {0, 1}

r

Input of ℛ: Q = (q1, . . . ,qt) ∈ ({0, 1}
∗)t .

Protocol:

(1) ℛ sends Q to ℱ F ,t
oprf. The sender receives k and receiver

receives F (k,q) for q ∈ Q .
(2) 𝒮 interpolates the unique polynomial p of degree n −

1 over the points {(x1,y1 ⊕ F (k,x1)), . . . , (xn ,yn ⊕
F (k,xn))}.

(3) 𝒮 sends the coefficients of p to ℛ.

(4) ℛ outputs (p, F (k,q1) ⊕ p(q1), . . . , F (k,qt) ⊕ p(qt)).

Figure 4: Polynomial-based OPPRF protocol

Costs. The main advantage of this construction is that the only

message that needs to be sent in addition to theℱoprf protocol is the

polynomial p whose length is exactly that of n values. This seems

the minimal communication overhead that is needed to achieve

OPPRF from OPRF. On the other hand, the interpolation of the

polynomial takes time 𝒪(n2) which can be expensive for large n.

3.3 A Construction Based on Bloom Filters
Garbled Bloom filters (GBF) were introduced in [9] in the context of

PSI protocols. A GBF is an arrayGBF [1 . . .N] of strings, associated
with a collection of hash functions h1, . . . ,hk : {0, 1}∗ → [N]. The
GBF implements a key-value store, where the value associated with

key x is: ⊕k
j=1GBF [hj (x)]. (⋆)

A GBF can be programmed to map specific keys to chosen values:

(1) Initialize array GBF with all entries equal to ⊥

(2) For each key-value pair (x ,v), let J = {hj (x) | GBF [hj (x)] =
⊥} be the relevant positions of GBF that have not yet been

set. Abort if J = ∅. Otherwise, choose random values for

GBF [J] subject to the lookup equation (⋆) equaling the de-

sired value v .
(3) For any remaining GBF [j] = ⊥, replace GBF [j] with a ran-

domly chosen value.

It is clear that, unless this procedure aborts, it produces a GBF

with the desired key-value mapping. In [9] it was observed that the

procedure aborts when processing item x if and only if x is a false

positive for a plain Bloom filter containing the previous items (think

of the plain Bloom filter obtained by interpreting a ⊥ in GBF as 0

and anything else as 1). The false-positive probability for a plain

Bloom filter has been well analyzed. In particular, to bound the

probability by 2
−λ

, one can use a table with N = nλ log
2
e entries

to store n items. In that case, the optimal number of hash functions

is λ. If we set λ = 40, we get that the table size is about 60n and

the number of hash functions is k = 40. In addition, by doing less

hashing[21], each insert only requires two hash functions h1(x)
and h2(x). The additional k − 2 hash functions hi (x), i ∈ [3,k], is
simulated by hi (x) = h1(x) + i × h2(x).

Given the GBF construction, an OPPRF construction is relatively

straightforward and similar to the polynomial-based construction.

Input of 𝒮 : n points 𝒫 = {(x1,y1), . . . , (xn ,yn)}, where xi ∈
{0, 1}∗, xi , x j and yi ∈ {0, 1}

r

Input of ℛ: Q = (q1, . . . ,qt) ∈ ({0, 1}
∗)t .

Protocol:

(1) ℛ sends Q to ℱ F ,t
oprf. The sender receives k and receiver

receives F (k,q) for q ∈ Q .
(2) 𝒮 inserts the n pairs

{(x1,y1 ⊕ F (k,x1)), . . . , (xn ,yn ⊕ F (k,xn))}

into a garbled Bloom filter denoted as G, with entries

which are each r bits long. It fills the remaining empty

entries with random values.

(3) 𝒮 sends G to ℛ as well as the k hash functions (the

functions need not be sent explicitly, and can be defined

by setting some context dependent prefixes to inputs of

a known hash function).

(4) For i = 1 to t ,ℛ computes zi = F (k,qi)⊕
⊕k

j=1G[hj (qi)].

Finally ℛ outputs (G, z1, . . . , zt).

Figure 5: Bloom-filter-based OPPRF protocol

Instead of the mappings xi 7→ yi ⊕ F (k,xi) being stored in a poly-

nomial, they are stored in a GBF. The construction is defined in

Figure 5. Security holds naturally, since if the yi points are chosen
randomly, all positions in the GBF are uniformly distributed.

Costs. The advantage of the Bloom filter based construction,

compared to the polynomial-based construction, is that the inser-

tion algorithm runs in time 𝒪(n) rather 𝒪(n2), and is also very

efficient in practice. The communication is still 𝒪(n) but the con-
stant coefficient is high (the actual communication is 60n items

rather than n) and therefore communication might be a bottleneck,

especially on slow networks.

3.4 Table-Based Construction
The previous OPPRF constructions can be instantiated with any

underlying OPRF that allows the receiver to evaluate the PRF on

any number t of points. The resulting OPPRF constructions will

inherit the same t . Meanwhile, our most efficient OPRF building

block from [26] only supports t = 1. In this section we describe a

construction tailored for the case of t = 1, and for small values of n
(the number of programmed points).

The main idea behind this construction is as follows. For each

pair (xi ,yi) the sender 𝒮 uses F (k,xi) as an encryption key to

encrypt the corresponding value yi . LetT be the collection of these

encryptions; then T comprises the OPPRF hint. At a high level,

the receiver can obtain F (k,q) and use it as a key to decrypt the

appropriate ciphertext from T .
The main challenges are: (1)ℛ should not know whether he is

getting random or programmed output values (i.e. whether x = xi
for some i), and (2)ℛmust learn which ciphertext fromT to decrypt.

We achieve both properties by using F (k,q) to derive a pointer into
the tableT . In order to achieve property (1),ℛmust always decrypt
some ciphertext of T , even if x , xi .

Concretely, suppose n is 20, so that 𝒮 needs to program only

20 points. 𝒮 will make a table T of size 2
5 = 32 (next power of 2

Session F1: Private Set Intersection CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1261

Input of 𝒮 : n points 𝒫 = {(x1,y1), . . . , (xn ,yn)}, where xi ∈
{0, 1}∗, xi , x j ; and yi ∈ {0, 1}

r

Input of ℛ: q ∈ {0, 1}∗.

Parameters: random oracle H : {0, 1}∗ → {0, 1}m , where

m = 2
⌈log(n+1)⌉

.

Protocol:

(1) ℛ sends q to ℱ F ,t
oprf. The sender receives k and receiver

receives F (k,q).
(2) 𝒮 samples v ← {0, 1}κ until {H (F (k,xi)∥v) | i ∈ [n]}

are all distinct.

(3) For i ∈ [n], 𝒮 computes hi = H (F (k,xi)∥v), and sets

Thi = F (k,xi) ⊕ yi .
(4) For j ∈ {0, 1}m \ {hi | i ∈ [n]}, 𝒮 sets Tj ← {0, 1}

r
.

(5) 𝒮 sends T and v to ℛ.

(6) ℛ computes h = H (F (k,q)∥v), and outputs (T ,v,Th ⊕
F (k,q)).

Figure 6: Basic table-based OPPRF protocol.

greater than 20). 𝒮 will choose a random nonce v ∈ {0, 1}κ until

{H (F (k,xi)∥v) | i ≤ 20} are all distinct, where H : {0, 1}∗ 7→

{0, 1}5 is a hash function modeled as a random oracle. For each

i ∈ [n], 𝒮 computes hi = H (F (k,xi)∥v), and setsThi = F (k,xi) ⊕yi .
The remaining entries of T (32 − 20 = 12 of them in this case) are

chosen uniformly. 𝒮 sends this nonce v together with the table T
to the the receiver as part of the hint.

From the receiver’s point of view, on input x he will use F (k,q)
to decrypt the ciphertext in position H (F (k,q)∥v) of the table. The
distinctness of the H (F (k,xi)∥v) values allows the sender to place

encryptions of the yi values at appropriate positions in T without

any conflicts. The details are given in Figure 6. Note that theOPPRF
protocol is restricted to the case of t = 1. Because of that, it suffices

to use one-time pad encryption for the table entries.

Security & parameters. The underlying programmable PRF

satisfies security based on two observations: The easy observation

is that table T itself is uniformly distributed when the yi values
are uniformly distributed (as in the security definition for pro-

grammable PRF).

Next, we must argue that the nonce v leaks no information

about the set of programmed points. Fix a candidate v and define

zi = H (F (k,xi)∥v). The sender tests this candidate v by seeing

whether there is a collision among {zi } values. The receiver sees
at most one value of the form F (k,xi). So by the PRF security of F ,
at least n − 1 of the other F outputs are distributed randomly from

the receiver’s perspective. Since H is a random oracle, it follows

that at least n − 1 of the zi values are distributed independent of

the receiver’s view (even when the receiver has oracle access to H).

Finally, the condition of a collision among randomly chosen {zi }
values is independent of any single zi . Hence, the probability of a

candidate v being chosen (and thus the overall distribution of v) is
the same regardless of whether the receiver queried F on one of

the sender’s programming points.

It is important to discuss the parameter choicem (length of H
output), as it greatly affects performance (the number of retries in

step 2 of the protocol). We can calculate the probability that for a

random v , the {H (si ∥v) | i ∈ [n]} values are distinct:

Prunique =
∏n−1

i=1

(
1 − i

2
m

)
(1)

The expected number of restarts when sampling v is 1/Prunique.
Looking ahead to our PSI protocol, theOPPRFwill be programmed

with n items, where n is the number of items hashed into a partic-

ular bin. Different bins will have a different number of items. We

must setm in terms of the worst case number of items per bin, so

that no bin exceeds 2
m

items with high probability. However, on
average, a bin will have very few items.

Concretely, for PSI of 2
20

items we choose hashing parameters

so that no bin exceeds 30 items with high probability. Hence we set

m = 5 (so T has 32 entries). Yet, the expected number of items in a

bin is roughly 3. For the vast majority of bins, the sender programs

the OPPRF on at most 7 points. In such a bin, only 2 trials are

expected before finding a suitable v .
Costs. This OPPRF construction has favorable communication

and computational cost. It requires communicating a single noncev
along with a table whose length is that of𝒪(n) items. The constant

in the big-O is at most 2 (the number of items is rounded up to

the nearest power of 2). The computational cost of the protocol is

to evaluate a random oracle H , nτ times, where τ is the number

of restarts in choosing v . While these computational costs can be

large in the worst case, the typical value of τ in our PSI protocol is

a small constant when averaged over all of the instances of OPPRF.
Our experiments confirm that this table-based OPPRF construction
is indeed fast in practice.

4 EXTENDING OPPRF TO MANY QUERIES
TheOPPRF constructions in the previous section are efficient when

n (the number of programmed points) is small. When built from the

efficient OPRF protocol of [26], they allow the receiver to evaluate

the programmable PRF on only t = 1 point. We now show how to

use a hashing technique to overcome both of these limitations. We

show how to extendOPPRF constructions described in the previous
section to support both a large n and a large t .

At the high level, the idea is that each party hashes their items

into bins. Each bin contains a small number of inputs which allows

the two parties to evaluate OPPRF bin-by-bin efficiently. The partic-

ular hashing approach we have in mind is as follows. Suppose the

receiver has items (q1, . . . ,qt) on which he wants to evaluate an

OPPRF. The sender has a set 𝒫 = {(x1,y1), . . . , (xn ,yn)} of points
to program.

Cuckoo hashing.The receiver uses Cuckoo hashing (Section 2.2)
to hash his items into bins. We will use a variant of Cuckoo hashing

with k hash functions h1, . . . ,hk , andm bins denoted as B[1 · · ·m].
Each item q is placed in exactly one of {B[h1(q)], . . . ,B[hk (q)]}.
Based on t and k , the parameterm is chosen so that every bin can

contain at most one item with probability 1 − 2−λ for a security

parameter λ. We note that previous applications of Cuckoo hash-

ing to PSI [38, 39] have used a variant of Cuckoo hashing that

involves an additional stash (a place to put items when insertion

fails). However, a stash renders our scheme much less efficient (ev-

ery item in one party’s stash must be compared to every item of

another party). Instead, we propose a variant of Cuckoo hashing

that avoids a stash by using 3 “primary” Cuckoo hash functions,

Session F1: Private Set Intersection CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1262

Probability

Bin scale & set size n
Max Bin Size 2

12
2
14

2
16

2
20

2
24

2
−30

ζ1 1.15 1.13 1.13 1.13 1.12

ζ2 0.14 0.14 0.14 0.15 0.16

β1 28 28 29 30 31

β2 63 63 63 63 63

2
−40

ζ1 1.17 1.15 1.14 1.13 1.12

ζ2 0.15 0.16 0.16 0.17 0.17

β1 27 28 29 30 31

β2 63 63 63 63 63

Table 2: Required number of binsm1 = nζ1,m2 = nζ2 to map-
ping n items using Cuckoo hashing, and required bin size
β1, β2 to mapping n items intom1 andm2 bins using Simple
hashing.

and then falling back to 2 “supplementary” Cuckoo hash functions

when the first 3 fail. We empirically determine the parameters used

in our hashing scheme to ensure that the hashing succeeds except

with the probability less than 2
−λ

. The details are in Appendix B.

Simple hashing. Using the same set of hash functions, the

sender then maps his points {x1, . . . ,xn } into bins, with each item

being mapped under all of the Cuckoo hash functions (i.e., each of

the sender’s items appears k times in the hash table). Using standard

balls-and-bins calculations based on n, k , andm, one can deduce an

upper bound β such that no bin contains more than β items except

with probability 1/2λ .

Denote bym1,m2 the number of bins used in 3-way “primary”

Cuckoo hashing and 2-way “supplementary” Cuckoo hashing, re-

spectively. Let β1, β2 denote the maximum bin size when using

Simple hashing to map n items tom1 andm2 bins with no overflow,

respectively. The parametersm = m1 +m2 and β ∈ {β1, β2} pre-
sented in Table 2. The details of how we obtained these numbers

are given in Appendix B.

Now within each bin, the receiver has at most one item q and

the sender has at most β , call them {(x1,y1), . . . , (xβ ,yβ)}. They
can therefore run the basic OPPRF protocol on these inputs. Note

that each of the sender’s points (x ,y) is mapped to several bins.

The OPPRF in each of those bins will be programmed with the

same (x ,y). That way, if the receiver does have some qi = x , then
no matter which of the possible bins it is mapped to in Cuckoo

hashing, the receiver will receive the correct output y.
The formal description of this protocol is given in Figure 7. The

protocol requiresm invocations of a single-query OPPRF, where
m = O(n) is the number of Cuckoo hash bins.

In sum, we are able to evaluate OPPRF for large number of

programmed pointsn and large number of queries simply by having

players hash their inputs into bins, and evaluate OPPRF per bin on

small-size instances.

Caveats. One subtlety in analyzing our construction has to do

with the security definition for a programmable PRF. Recall that in

that definition (Section 3.1), the programmed output (y values) are

chosen randomly. Yet in our protocol the sender programs different

bins with correlated outputs. In particular, when an xi is mapped

to several bins, the OPPRF in each bin is programmed with the

same (xi ,yi) point. To deal with this, we must use the fact that

Input of 𝒮 : n points 𝒫 = {(x1,y1), . . . , (xn ,yn)}, where xi ∈
{0, 1}∗, xi , x j and yi ∈ {0, 1}

r

Input of ℛ: Q = (q1, . . . ,qt) ∈ ({0, 1}
∗)t .

Parameters:

• Hash function h1, . . . ,h5, number of binsm ∈ {m1,m2},

and max bin size β ∈ {β1, β2}, suitable for our hashing
scheme (Table 2)

Protocol:

(1) ℛ hashes items Q intom bins using the Cuckoo hashing

scheme defined in Section 4. Let Bℛ[b] denote the item
in the receiver’s bth bin (or a dummy item if this bin is

empty).

(2) 𝒮 hashes items {x1, . . . ,xn } intom1 bins under 3 hash

functions h1,h2,h3, and hashes items {x1, . . . ,xn } into
m2 bins under 2 hash functions h4,h5. Let B𝒮 [b] denote
the set of items in the sender’s bth bin.

(3) For c ∈ [1, 2], for each bin b ∈ [mc]:

(a) 𝒮 computes 𝒫b = {(xi ,yi) | (xi ,yi) ∈ 𝒫 and xi ∈
B𝒮 [b]}, then pads 𝒫b with dummy pairs to the maxi-

mum bin size βc

(b) Parties invoke an instance of ℱ F ,1,βc
opprf with inputs 𝒫b

for the sender and Bℛ[b] for the receiver.
(c) 𝒮 receives output (kb , hintb), and ℛ receives output

(hintb , F (kb , hintb ,Bℛ[b])).
(4) For each item qi ∈ Q , let zi = F (kb , hintb ,qi) where b is

the bin to whichℛ has hashed qi . The receiver outputs
(hint1, . . . , hintm), (z1, . . . , zt)

Figure 7: Hashing-based OPPRF protocol

the receiver is guaranteed to never query two bins on the same q
(corresponding to the fact that his Cuckoo hashing assigns each q
to a unique bin).

5 MULTI-PARTY PSI
We now present our main result, an application of OPPRF to multi-

party PSI. We use the following notation in this section. We denote

the n parties by P1, . . . , Pn , and use subscripts i and j to refer to

individual parties. Let Xi ⊆ {0, 1}
∗
denote the input set of party

Pi . The goal is to securely compute the intersection

⋂
i Xi . For

sake of simplicity, we assume each set hasm items and write Xi =
{x i

1
, . . . ,x im }. We use subscript k to refer to a particular item x ik .

As discussed at the Introduction (cf. Section 1.3), our PSI protocol

proceeds in two consecutive phases, conditional zero-sharing
and conditional reconstruction of secrets. Importantly, OPPRF
is efficient even when run on large input sets, thanks to our use of

Cuckoo hash as discussed in Section 4.

5.1 Conditional Zero-Sharing
We will first describe the end goal of conditional zero-sharing and

then discuss howwe use multi-queryOPPRF of Section 4 to achieve
it. At the end of this phase, each party Pi will have a mapping

Si : Xi → {0, 1}
∗
that associates each of its items x ik ∈ Xi with

an additive secret share Si (x
i
k). We require the following property:

Session F1: Private Set Intersection CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1263

if x ∈
⋂
i Xi (i.e., x is in the intersection), then the corresponding

shares {Si (x) | i ∈ [n]} will XOR to zero.

To achieve this, first consider the case of two parties P1 and P2.
For each item x1k ∈ X1, party P1 will choose a random string sk
and record the mapping S1(x

1

k) = sk . Then the parties can use an

instance of multi-query OPPRF as follows. P1 programs the OPPRF

using points {(x1k , sk) | k ∈ [m]}, and P2 acts as receiver with

input queries X2. As a result, P2 will obtain for every x2k ∈ X2 a

corresponding OPPRF output, which we will denote S2(x
2

k). From

the properties of an OPPRF, the mappings S1 and S2 have the

desired property. If the parties share an item x1k then both will have

S1(x
1

k) = S2(x
1

k) = sk , corresponding to an XOR-additive sharing

of 0. The properties of the OPPRF ensure that P2 does not know
whether he is receiving real shares or random values for any item.

The case of n parties is similar. Each party Pi will act as dealer for
each of their items x ik ∈ Xi , generating a random additive sharing

of zero: si,1k ⊕ · · · ⊕ s
i,n
k = 0. Then each pair of parties Pi and Pj use

an instance of OPPRF as follows. Pi programs the OPPRF using

points {(x ik , s
i, j
k) | k ∈ [m]}, and Pj acts as receiver with input

queries X j . In other words, s
i, j
k is the share that is conditionally

sent from party Pi to Pj pertaining to item x ik .
Now each Pj has acted as OPPRF receiver for all other parties.

For each item x
j
k ∈ X j , the party has an OPPRF output from every

sender Pi , along with their own share s
j, j
k . Denote by Sj (x

j
k) the

XOR of all of these values. It is easy to see that these Sj mappings

satisfy the desired property. If some x is shared by all parties, then

all pairs of parties will exchange shares corresponding to that item.

All shares generated by a single party XOR to zero, so all of the

Sj (x) values XOR to zero as desired.

5.2 Conditional Reconstruction
The second phase of the protocol is a conditional reconstruction
of secrets. In this phase party P1 acts as a centralized “dealer.” For

each item x ∈ X1 belonging to the dealer, he would like to determine

whether x is in the intersection. It suffices for him to obtain all Si (x)
values from all the parties. However, since some parties may not

hold item x , they may not have a well-defined Si (x) value.
This problem can again be solved with an OPPRF. Each party Pi

programs anOPPRF instance on points {(x , Si (x)) | x ∈ Xi }, and P1
acts as receiver with PRF queries X1. Hence, for each item x ∈ X1,

dealer P1 learns an associated value yi from the OPPRF with party

i . If x is indeed in the intersection, then we expect

⊕
i,1 y

i = S1(x).
Otherwise the left-hand-side will be a random value.

5.3 Details and Discussion
A formal description of the protocol is in Figure 8.

Correctness. From the preceding high-level description, it is

clear that the protocol is correct except in the event of a false posi-

tive — i.e., S1(x
1

k) =
⊕

i y
i
k for some x1k ∈ X1 not in the intersection.

Let Pi be a party who did not have x1k in their input set. That party

will not program their OPPRF in Step 4 on the point x1k . As a result,

the term yik is pseudorandom. Hence the probability that of a false

positive involving x1k is 2
−ℓ
. By setting ℓ = λ + log

2
(m), a union

Parameters: n parties P1, . . . , Pn .

Input: Party Pi has input Xi = {x
i
1
, . . . ,x im } ⊆ {0, 1}

∗

Protocol:

(1) For all i ∈ [n] and all k ∈ [m], party Pi chooses random

{s
i, j
k | j ∈ [n]} values subject to

⊕
j s

i, j
k = 0.

(2) For all i, j ∈ [n], parties Pi and Pj invoke an instance of

ℱ F ,m,m
opprf where:

• Pi is sender with input {(x ik , s
i, j
k) | k ∈ [m]}.

• Pj is receiver with input X j .

For x
j
k ∈ X j , let ŝ

i, j
k denote the corresponding output of

ℱopprf obtained by Pj .

(3) For all i ∈ [n] and k ∈ [m], party Pi sets Si (x
i
k) = si,ik ⊕⊕

j,i ŝ
j,i
k .

(4) For i = 2 to n, parties Pi and P1 invoke an instance of

ℱ F ,m,m
opprf where:

• Pi is sender with input {(x ik , Si (x
i
k) | k ∈ [m]}.

• P1 is receiver with input X1.

For x1k ∈ X1, let y
i
k denote the corresponding output for

x1k of ℱopprf involving Pi .

(5) Party P1 announces {x
1

k ∈ X1 | S1(x
1

k) =
⊕

i,1 y
i
k }.

Figure 8: Multi-Party PSI Protocol

bound shows that the probability of any item being erroneously

included in the intersection is 2
−λ

.

Theorem 5.1. The protocol of Figure 8 is secure in the semi-honest
model, against any number of corrupt, colluding, semi-honest parties.

Proof. LetC and H be a coalition of corrupt and honest parties,

respectively. To show how to simulate C’s view in the ideal model,

we consider two following cases based on whether all parties in C
have item x :

• All parties in C have x and not all parties in H have x : if H
contains only one honest party Pi , then Pi does not have
x . From the output of set intersection, C can deduce that Pi
does not have x . Thus, there is nothing to hide about whether
Pi has x in this case.

Consider the case that H has more than one honest party,

say Pi and Pj . Suppose Pi has x , while party Pj does not. So,
x does not appear in the intersection. We must show that

the protocol must hide the identity of which honest party is

missing x .
In Step 2 of the protocol, there is an OPPRF instance with Pj
as sender and Pi as receiver. Pj will not program the OPPRF
at point x , so Pi will receive a pseudorandom output for

x that is independent of the corrupt coalition’s view. This

causes Si (x) to be independent of the coalition’s view.

Later in Step 4, if the dealer is corrupt, both Pi and Pj act as
OPPRF senders with the dealer. Pi programs the OPPRF at x
using the pseudorandom value Si (x). Pj doesn’t program the

OPPRF at point x . The security of OPPRF is that program-

ming the PRF at x with a random output is indistinguishable

from not programming at x at all. In other words, parties Pi

Session F1: Private Set Intersection CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1264

and Pj have indistinguishable effect on the conditional re-

construction phase. If dealer is honest, the corrupt coalition’s

view is simulated from Step 2 based on the functionality of

OPPRF.

• Not all corrupt parties in C have x : we must show that C
should learn nothing about whether any of the honest parties

hold x .
Any honest party Pi who holds x generates corresponding

shares si, j , to be conditionally distributed in Step 2. But

some corrupt party does not query the OPPRF on x in step 2.

This makes all the si, j shares corresponding to x distributed

uniformly. All honest parties Pj who hold x will therefore

have Sj (x) uniformly distributed of the coalition’s view. In

Step 4, the honest parties that hold x will program theOPPRF
on (x , Sj (x)). The honest parties that don’t hold x will not

program the OPPRF on point x . As above, programming

the PRF with a random output is indistinguishable from not

programming at that point at all. Hence all honest parties

have indistinguishable effect on the reconstruction phase.

�
Cost and Optimizations. In the conditional sharing phase, each

party performs a multi-query OPPRF with every other party. In

the reconstruction phase, each party performs just one multi-query

OPPRF with the leader P1. Recall that the cost of each of these is

one instance of single-query OPPRF per Cuckoo-hashing bin.

The multi-query OPPRF scales well when sender and receiver

have different number of elements. Therefore, our multi-party PSI

protocol allows each party’s set to have different size. The number

of OPPRF instance depends on the number of bins for Cuckoo-

hashing, and the OPPRF receiver is the one using Cuckoo hashing

(sender uses plain hashing). Thus, our PSI protocol is more efficient

by setting the leader P1 as the party with the smallest input set.
We note that all of the OPPRF instances in the conditional shar-

ing phase can be done in parallel, and all the OPPRF instances in

the reconstruction phase can as well. This leads to a constant-round

protocol.

Finally, recall that the multi-query OPPRF uses Cuckoo hashing.

It is safe for all such instances, between all pairs of parties, to use

the same Cuckoo hash functions. That way, a party only needs to

hash their input set twice at the beginning of the protocol (once

with Cuckoo hashing for when they are OPPRF receiver, and once

with simple hashing for when they are OPPRF sender).

Generalization. Suppose wewish to secure the protocol against
the possibility of at most t corrupt (colluding) parties. The default
case is to consider t = n − 1. For smaller t , we can simplify the

protocol. The idea is tomodify the conditional zero-sharing protocol

so that party Pi generates shares of zero only for {Pi+1, . . . , Pi+t+1}
(where indices on parties are mod n). The security analysis applies

also to this generalization, based on the fact that if Pi is honest,
then at least one of Pi+1, . . . , Pi+t+1 must also be honest.

6 FURTHER OPTIMIZATIONS
6.1 PSI in Augmented Semi-Honest Model
In this section we show an optimization to our PSI protocol which

results in a protocol secure in the augmented semi-honest model

(cf. Section 2 and Appendix A).

Initialization: Each party Pi picks random seeds ri, j for j =
i + 1, . . . ,n and sends seed ri, j to Pj

Generate zero-sharing: Given an index ind , each Pi computes

Si (ind) =
©­«
i−1⊕
j=1

F (r j,i , ind)
ª®¬ ⊕ ©­«

n⊕
j=i+1

F (ri, j , ind)
ª®¬

Figure 9: The zero-sharing protocol

Unconditional zero-sharing.The previous protocol starts with
a conditional zero-sharing phase, where parties obtain shares of zero
or shares of a random value, based on whether they share an input

item x . In this section we propose an unconditional zero-sharing
technique in which the parties always receive shares of zero.

We describe a method for generating an unlimited number of

zero-sharings derived from short seeds that can be shared in a one-

time initialization step. The protocol is described in Figure 9. The

protocol is based on an initialization step where each pair of parties

exchange keys for a PRF F , after which each party knows n−1 keys.
Then, whenever zero-sharing is needed, party Pi generates a share
as Si (ind) =

⊕
r F (r , ind), where ind is an index which identifies

this protocol invocation, and r ranges over all the keys shared with

other parties.

We first observe that the XOR of all Si (ind) shares is indeed 0,

since each term F (ri, j , ind) appears exactly twice in the expression.

As for security, consider a coalition of t < n− 1 corrupt parties, and
let Pk be the honest party with smallest index. Pk sends random

seeds to all other honest parties. These seeds are independent of all

other seeds, and are unknown to the corrupt coalition. They result

in set of n − t − 1 pseudorandom terms that are included in the

shares of all honest parties other then Pk . Therefore the shares of
the honest parties look pseudorandom to the coalition (subject to

all shares XORing to zero).

Plugging into the PSI protocol. Suppose we modify our main

PSI protocol (Figure 8) in the following ways:

• Instead of steps 1-3, the parties perform the unconditional

zero-sharing phase of Figure 9. That is, they run the initialize

phase to exchange seeds and then set their Si mappings

accordingly.

• Then they continue with Figure 8 starting at step 4.

The modification significantly reduces the cost of the zero-sharing

phase (which was the most expensive part of Figure 8) with a zero-

sharing phase that costs almost nothing. Our experiments confirm

that this modified protocol is faster than the standard semi-honest-

secure protocol, by a significant constant factor.

Correctness of the modified protocol follows from the same

reasons as for the unmodified protocol. Namely, if some party Pi
does not have an item x , then they will not program their OPPRF
with P1 at point x . This causes P1 to obtain a random value in the

reconstruction phase and subsequently not include x in the output.

Theorem 6.1. The modified protocol (with unconditional zero-
sharing) is secure in the augmented semi-honest model.

Proof Sketch. Consider a coalition C of corrupt parties. We

must show how to simulate C’s view in the ideal model. If P1 < C
then, assuming that the underlying OPRF protocol is secure, the

Session F1: Private Set Intersection CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1265

view ofC consists only of the output of the invocations of the OPRF

protocol (acting as sender in each one), and is therefore random.

If the leader P1 ∈ C then the simulator sends to the ideal PSI

functionality the setX1 as the input of every corrupt party (this is the
advantage given to the simulator in the augmented security model).

Let Z denote the output of the functionality (the intersection of all

sets). P1’s view contains OPPRF outputs from all honest parties,

corresponding to every x ∈ X . For x ∈ Z , simulate a random

sharing of zero as the correspondingOPPRF outputs. For x ∈ X1\Z ,
simulate random values for the corresponding OPPRF outputs. �

Let us give an intuition on why this protocol achieves security

only in the augmented model. In this modified protocol, the zero-

sharing for each candidate x is generated non-interactively by the

parties. So even though a corrupt party Pi does not have an item

x , he can non-interactively imagine what his correct share Si (x)
would be. When colluding with P1, this allows the adversary to

learn exactly what would have happened if Pi included x in its set

(but only if x ∈ X1 as well).

In the semi-honest protocol (Section 5), however, a corrupt party

interacts with honest parties to generate a zero-sharing correspond-

ing to x . At the time of the interaction, the corrupt party Pi “com-

mits” to having x in its input set or not, depending on whether it

queries the OPPRF on x . If during the (conditional) zero-sharing

phase Pi does not have x in its input set, then there is no way to

later guess what the “correct share” would have been.

6.2 Reducing OPPRF Hint Size
In this section we look inside the several layers of abstraction in

our PSI protocol, and use a global view of things to find room for

optimization. We focus on the multi-query OPPRF construction

from Section 4. Recall that it works in the following way:

• The OPPRF receiver hashes their queries intom bins via a

Cuckoo hashing method.

• The OPPRF sender hashes their programming-points into

m bins using simple hashing, for each Cuckoo hash function
(i.e., assigning a single item to many bins).

• In each bin, the parties perform a single-query OPPRF in-

stance, where the receiver queries on their (unique) item in

that bin.

Now look even further inside those single-query OPPRF in-

stances. In each one, the parties invoke an OPRF instance and

furthermore the sender gives a “hint” that contains the information

to correct/program the OPRF outputs to the desired values.

There are two possible approaches for sending the hints that

are required for these OPPRF computations. The straightforward

approach sends a separate hint per OPPRF invocation, namely

per bin. The other approach sends a single combined hint for all

bins. Namely, this combined hint is a single polynomial or Bloom

filter, which provides for each of them possible inputs of Pi the
correct “hint” for changing the output of the corresponding OPRF

invocation.

The advantage of the “separate hints” approach is that in each

OPPRF invocation each party Pi has only S = 𝒪(logm/log logm)
points and therefore computing the hint might be more efficient.

This is relevant for the polynomial-based hint, since its computa-

tion time is quadratic in the size of the set of points. Therefore,

the overhead of computing a single combined hint polynomial is

O(m2) whereas the overhead of computing hints for all bins is only

𝒪(m log
2m/log2(logm)). On the other hand, when computing a

hint per bin, the total number of points is 𝒪(m logm/log logm),
whereas if a combined hint is used, the total number of points is

𝒪(m). We expect (and validate in the experiments in Section 7), that

a combined hint works better for the Bloom filter-based OPPRF,
since the cost of this method is linear in the total number of points.

On the other hand, the bottleneck of the polynomial-based OPPRF
is the quadratic overhead of polynomial interpolation, thus when

using that OPPRF it is preferable to use separate hints per bin.

Improvements:We can add the following improvements to the

basic protocol:

• In polynomial-basedOPPRFwith “separate hints", theOPPRF
sender does not need to pad with dummy items to the max-

imum bin size β before interpolating a polynomial over β
pairs per bin. Instead of that, he interpolates a polynomial

p1(x) over k < β real pairs (xi ,yi) and then add it with a

polynomial p2(x) of degree (β − 1). p2(x) can be efficiently

implemented as R(x)
∏k

i=1(x − xi), where R(x) is a random
polynomial of degree (β − 1 − k). Using example hashing

parameters from Section 5, the expected value of k is only 3,

while the worst-case β = 30. This optimization reduces the

cost of expensive polynomial interpolation.

• In polynomial-basedOPPRFwith combined hints, theOPPRF
sender can send a combined hint for each hash function hi .
That is, for each Cuckoo hash function hi , the sender com-

putes a hint that reflects all of the bin-assignments under

that specific hi . The receiver hashes its items with Cuckoo

hashing, and places each item according to exactly one hash

function hi . For each item, the receiver can therefore use the

combined hint for that specific hi .
• In Bloom filter-based OPPRF invocation, each of sender’s

item appears 5 times in hash table, there are 5 different

OPRF values F (khi ,x)). Instead of inserting 5 pairs of the

form (x ,y ⊕ F (khi ,x)) into the GBF, the sender can instead

insert the concatenated value (x , (y ⊕ F (kh1 ,x))| | . . . | |(y ⊕
F (kh5 ,x))). This reduces the number of the GBF insertions.

6.3 3-party PSI in Standard Semi-Honest Model
Our idea for three-party PSI (3-PSI) is to have all 3 players perform

an (encrypted) incremental computation of the intersection. Namely,

P1 and P2 will first let P2 obtain an encoding of partial intersection

X12 = X1∩X2. Then P2 and P3 will allow P3 to obtain some encoding

of X123 = X12 ∩ X3. In the end, P1 will decode the output X123 =

X1 ∩ X2 ∩ X3.

To do this, the leader P1 chooses a random encoding e1k for each of

his inputs x1k . P1 then acts as a sender inOPPRF, programming it on

points {(x1k , e
1

k) | k ∈ [m]}. P2 acts as a receiver inOPPRF using his
input set X2, and obliviously receives either one of these encodings

(if his input was a corresponding match) or a random string. Denote

by ê2k the value that P2 obtains for each of his items x2k . The process
repeats: P2 will play the role of OPPRF sender with receiver P3. P2
will program the OPPRF on points {(x2k , ê

2

k) | k ∈ [m]} and P3 will

Session F1: Private Set Intersection CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1266

Parameters: 3 parties P1, P2, P3.

Input: Party Pi has input Xi = {x
i
1
, . . . ,x im } ⊆ {0, 1}

∗

Protocol:

(1) For all k ∈ [m], party P1 chooses random distinct {e1k |

k ∈ [m]} values.

(2) Party P1 and P2 invoke with an instance of ℱ F ,m,m
opprf

where:

• P1 is sender with input {(x1k , e
1

k) | k ∈ [m]}.
• P2 is receiver with input X2.

For x2k ∈ X2, let ê
2

k denote the corresponding output of

ℱopprf obtained by P2.

(3) In turn, each party Pi , i ∈ {2, 3}, invokes with Pi+1 an

instance of ℱ F ,m,m
opprf where:

• Pi is sender with input {(x ik , ê
i
k) | k ∈ [m]}.

• Pi+1 is receiver with input Xi+1.
For x i+1k ∈ Xi+1, let ê

i+1
k denote the corresponding output

of ℱopprf obtained by Pi+1 (indices are mod n)

(4) Party P1 announces {x
1

k ∈ X1 | e
1

k = ê1k }.

Figure 10: Optimized Three-party PSI Protocol

query the OPPRF on his input set X3. Denote by ê
3

k the value that

P3 obtains for each of his items x3k .
Finally, P3 acts as OPPRF sender and programs the OPPRF on

points {(x2k , ê
2

k) | k ∈ [m]}, while P1 acts as receiver and queries

the OPPRF on points X1. It is clear that if x
1

k is in the intersection,

then P1 will receive e
1

k (a value he initially chose) as OPPRF output;
otherwise he will receiver a random value. A formal description of

the protocol is in Figure 10.

Extending the above to n > 3 parties faces the following diffi-

culty: If P1 and Pj collude, they will learn the partial intersection

X1 ∩ · · · ∩X j . Indeed, as an OPPRF receiver, Pj will receive the set
of values which can be cross-checked with the encodings generated

by P1. More generally, colluding players Pi and Pj can compute

partial intersection Xi ∩ · · · ∩ X j by comparing their encodings.

We note that this is not an issue in 3-PSI, since colluding P1 and
P2 can compute X1 ∩X2 anyway; colluding P2 and P3 cannot learn
any information about the decrypted key e1i held by P1 thus the
corrupted parties compute X2 ∩ X3 anyway; and colluding P1 and
P3 can compute X1 ∩ X2 ∩ X3 which is the desired PSI output.

With the above optimization, our 3-PSI protocol needs only 3

OPPRF executions, compared to the 4 OPPRF executions for the

general protocol described in Section 5. The performance gain of

the optimized protocol is not very strong when the network is slow

since parties invoke OPPRF in turn and they have to wait for the

previous OPPRF completed. We implemented both 3-PSI protocol

variants and found this optimized variant to be 1.2 − 1.7× faster.

7 IMPLEMENTATION AND PERFORMANCE
In order to evaluate the performance of our multi-party PSI pro-

tocols, we implement many of the variants described here. We do

a number of experiments on a single server which has 2x 36-core

Intel Xeon 2.30GHz CPU and 256GB of RAM. We run all parties in

the same network, but simulate a network connection using the

Linux tc command: a LAN setting with 0.02ms round-trip latency,

10 Gbps network bandwidth; a WAN setting with a simulated 96ms

round-trip latency, 200 Mbps network bandwidth.

In our protocol, the offline phase is conducted to obtain an 128

base-OTs using Naor-Pinkas construction [33]. Our implementa-

tion uses OPRF code from [26, 42]. All evaluations were performed

with a item input length 128 bits, a statistical security parameter

λ = 40 and computational security parameter κ = 128. The running

times recorded are an average over 10 trials. Our complete imple-

mentation is available on GitHub: https://github.com/osu-crypto/

MultipartyPSI

7.1 Optimized PSI, Augmented Model
In this section we discuss the PSI protocol from Section 6 that is

optimized for the augmented semi-honest model. We implemented

and tested the following variants (see Section 6.2 for discussion

on variant techniques of sending hints) on different set sizesm ∈
{212, 214, 216, 220}:

• BLOOM FILTER: where the OPPRF used a single combined

garbled Bloom filter hint. In our hashing-to-bin scheme (Ap-

pendix B), sender uses h = 5 hash functions to insertm items

into bins. With the optimization in Section 6.2, there are only

m pairs inserted into the table which hasmλ log
2
e entries.

The table uses an array of h(λ + log
2
(m))-bit strings.

• POLYNOMIAL combined: where the OPPRF used combined

polynomial hints per hash index. Polynomial interpolation

was implemented using the NTL library[48]. Each polyno-

mial is built onm points. The coefficients of the polynomial

are λ + log
2
(m)-bit strings.

• POLYNOMIAL separated: where the OPPRF used a separate

polynomial hint per bin. The coefficient of the polynomial

has λ + log
2
(m)-bit strings. The degree of polynomial is β1

for each bin in firstmζ1 bins, and β2 for each bin in lastmζ2
bins. Here ζ1, ζ2, β1 and β2 are discussed in Table 2.

• TABLE: where the OPPRF used a separate table hint per bin.

The table has 2
⌈log

2
(β1)⌉

entries for each bin in firstmζ1 bins,

and 2
⌈log

2
(β2)⌉

entries for each bin in lastmζ2 bins. Each row

has λ + log
2
(m)-bit strings.

The running times and communication overhead of our imple-

ment with 5 parties are shown in Table 3. The leader party uses up

to 4 threads, each operates OPPRF with other parties. As expected,

our table-based protocol achieves the fastest running times in com-

parisonwith the otherOPPRF constructions. Our experiments show

that it takes only one second to sample vector v and check unique-

ness for all 2
20

bins. Thus, the table-based PSI protocol costs only 22

seconds for the set sizem = 2
20
. The polynomial-based PSI protocol

with separated hint is the next fastest protocol which requires a

total time of 38 seconds, a 1.7× slowdown. The slowest protocol is

the polynomial-based protocol with combined hint per hash index,

whose running time clearly grows quadratically with the set size.

However, this protocol has the smallest communication overhead.

For small set sizem = 2
14
, the polynomial-based PSI protocol with

combined hint requires only 1.74MB for communication.

Session F1: Private Set Intersection CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1267

https://github.com/osu-crypto/MultipartyPSI
https://github.com/osu-crypto/MultipartyPSI

Protocol

Running time (second) Communication (MB)
Set Sizem

2
12

2
14

2
16

2
20

2
12

2
14

2
16

2
20

BLOOM FILTER 0.37 0.98 3.41 51.46 8.56 34.26 137.01 2496.2

POLY (combined hint) 7.36 194.96 - - 0.43 1.74 - -

POLY (separate hints) 0.32 0.74 2.33 37.89 1.46 5.98 24.30 447.44
TABLE 0.29 0.57 1.48 21.93 1.64 6.52 25.93 467.66

Table 3: The total runtime and communication of our Multi-Party PSI in augmented semi-honest model in LAN setting. The
communication cost which ignore the fixed cost of base OTs for OT extension is on the client’s side. Cells with − denote trials
that either took longer than hour or ran out of memory.

Setting

Number Threshold Set Sizem
Parties n Corruption t 2

12
2
16

2
20

2
24

LAN

3 {1, 2}
0.21 (0.99)* 1.34 (1.19)* 25.81 (25.23)* 409.90 (399.67)*

0.30 (0.16) 2.14 (1.97) 41.64 (41.10) 702.3 (69.69)

4

1 0.25 (0.12) 1.80 (1.60) 28.86 (28.27) 484.3 (478.2)

{2, 3} 0.34 (0.21) 3.16 (2.92) 52.25 (51.65) 865.7(859.4)

5

1 0.26 (0.12) 1.99 (1.79) 32.13 (31.49) 505.2 (499.2)

2 0.32 (0.19) 3.44 (3.23) 49.17 (48.54) -

4 0.39 (0.26) 4.87 (4.61) 71.28 (70.60) -

10

1 0.39 (0.17) 2.97(2.71) 46.08 (45.28) -

5 0.83 (0.55) 8.79 (8.47) 136.48 (135.44) -

9 1.01 (0.72) 12.33 (11.98) 182.8 (181.60) -

15

1 0.46 (0.23) 4.28 (3.97) 64.28 (63.27) -

7 1.37 (0.77) 13.47 (12.79) 201.12 (199.34) -

14 1.85 (1.32) 20.61 (20.02) 304.36 (302.17) -

WAN

3 {1, 2}
2.82 (2.34)* 10.48 (9.96)* 129.45 (128.64)* -

3.12 (2.64) 11.25 (10.73) 158.50 (157.64) -

4

1 2.65 (1.97) 12.40 (11.71) 151.9 (150.9) -

{2, 3} 3.18 (2.51) 17.47 (16.74) 233.1 (232.1) -

5

1 2.66 (1.99) 13.76 (13.06) 185.5 (184.5) -

2 3.21 (2.53) 20.29 (19.56) 290.9 (289.8) -

4 3.45 (2.78) 25.52 (24.79) 378.5 (377.4) -

10

1 3.30 (2.63) 26.42 (25.73) 400.9 (399.8) -

5 5.67 (4.98) 76.43 (75.78) 1,194 (1,193) -

9 7.81 (7.14) 112.8 (112.1) 1,915 (1,914) -

15

1 3.63 (3.15) 39.11 (38.60) 664.08 (662.80) -

7 9.87 (9.38) 150.85 (150.31) 2641 (2,640) -

14 16.42 (15.96) 263.20 (262.67) - -

Table 4: Total running time and online time (in parenthesis) in second of our semi-honest Multi-Party PSI for the number
of parties n, t < n dishonestly colluding, each with set sizem. Number with ∗ shows the performance of the optimized 3-PSI
protocol described in Section 6.3. Cells with − denote trials that either took longer than hour or ran out of memory.

7.2 Standard Semi-Honest PSI
In this section we discuss the standard semi-honest variant of our

protocol, using conditional zero-sharing (Section 5). From the em-

pirical results discussed in the previous section, the most efficient

OPPRF instantiation is the TABLE-based hint. Thus, the OPPRF
was instantiated using the TABLE-based protocol in this section.

To understand the scalability of this protocol, we evaluate it

on the range of the number parties n ∈ {3, 4, 5, 10, 15} on the set

size m ∈ {212, 216, 220, 224}. We also wanted to understand the

performance effect of the generalization discussed in Section 5.3

in which the protocol is tuned to tolerate an arbitrary number t of
corrupted parties. In our experiments, we used t ∈ {1, ⌊n/2⌋,n − 1}.

Our protocol scales well using multi-threading between n parties.

In our implementation, the leader P1 uses n − 1 threads and other

parties use min{t + 1,n − 1} threads so that each party operates

OPPRF protocol with other parties at the same time. However, we

use a single thread to perform the OPPRF subprotocol between two

parties.

We proposed a better “hashing to bin" scheme (Appendix B)

than the state-of-art two-party PSI [26]. Specifically, our hashing

scheme removes the stash bins which consume nontrivial cost of

the protocol [26] for sufficiently small sets. For example of 2
12

set

size, we see that our protocol requires 168 milliseconds compared

to 211 milliseconds by [26], a difference of 1.2×.

Results. Table 4 presents the running time of our PSI protocol

in both LAN and WAN setting. We report the running time for

the total time and online phase. The offline phase consists of all

Session F1: Private Set Intersection CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1268

3 4 5 10 15

30

60

120

180

240

300

Number of parties n

R
u
n
i
n
g
t
i
m
e
i
n
s
e
c
o
n
d

t = 1

t = ⌊n/2⌋
t = n − 1

Figure 11: Total running time of our semi-honest Multi-
Party PSI for the number of parties n, t < n dishonestly col-
luding, each with set size 220, in LAN setting.

Number Threshold Set Sizem
Parties n Corruption t 2

12
2
16

2
20

2
24

3 {1, 2}

3.28 51.87 935.32

14,860

{4, 5}
1

{10, 15} -

4 {2, 3} 4.92 77.80 1,402 22,290

5

2 4.92 77.80 1,402 -

4 6.56 103.74 1,870 -

10

5 9.84 155.61 2,805 -

9 14.76 233.41 4,208 -

15

7 13.12 207.48 3,741 -

14 22.96 363.09 6,547 -

Table 5: The numerical communication (inMB) of ourMulti-
Party PSI in semi-honest setting. The cost is on the client’s
side for the number of parties n, t < n dishonestly colluding,
each with set sizem. Communication costs ignore the fixed
cost of base OTs for OT extension. Cells with − denote trials
that either took longer than hour or ran out of memory.

operations which do not depend on the input sets. In the three-

party case, our protocol supports the full corrupted majority. For

m = 2
20
, our general 3-PSI protocol (Section 5) in LAN setting

costs 42 seconds while the optimized protocol (Section 6.3) takes 26

seconds which is 1.6× faster. When evaluating our 3-PSI in WAN

setting, we found this optimized variant to be 1.2× faster. This is

primarily due to the need to wait for previous OPPRF completed.

To address the possibility of at most t parties colluding, each
party performsOPPRFwithmin{t+1,n−1} other parties. Therefore
the cost of the protocol is the same for t = n − 1 as t = n − 2. Hence,
we report the protocol performance with the n = 4 and t ∈ {2, 3}
on the same row of the Table 4.

As we can see in the table 4, our protocol requires only 72 seconds

to compute a PSI ofn = 5 parties form = 2
20

elements. For the same

set size, when increasing the number of parties to n = 10, our total

running time is 3 minutes and if n = 15 our protocol takes around

5 minutes. Figure 11 shows that our protocol’s cost is linear in the

size of number parties. When assuming only one corrupt party, our

protocol takes only 64 seconds to compute PSI of 15 parties for

m = 2
20

elements. For the small set size ofm = 2
12
, the PSI protocol

of n = 15 parties takes an total time of 1.85 seconds with the online

phase taking 1.32 seconds. We find that our protocol also scales to

large input sets (m = 2
24
) with n ∈ {3, 4, 5} participants.

Table 5 reports the numerical communication costs of our imple-

mentation. The protocol is asymmetric with respect to the leader

P1 and other parties. Because the leader plays the role of receiver

in most OPPRFs, the majority of his communication costs can be

done in an offline phase. Hence we report the communication costs

of the clients, which reflects the online cost of the protocol. For the

small set size ofm = 2
12
, only 3.28MB communication was required

in 3-PSI protocol on the client’s sides. The communication com-

plexity of our protocols is 𝒪(mtλ) bits. Thus, our protocol requires
gigabytes of communication for a large set size (m ∈ {220, 224}).
Concretely, for the large input setm = 2

24
, our 3-PSI protocol uses

14.8GB of communication, roughly 0.88KB per item.

ACKNOWLEDGEMENTS
The first author was supported by Office of Naval Research (ONR)

contract number N00014-14-C-0113. The second and third authors

were supported by the BIU Center for Research in Applied Cryp-

tography and Cyber Security in conjunction with the Israel Na-

tional Cyber Bureau in the Prime Minister’s Office. The fourth and

fifth author were partially supported by NSF awards #1149647 and

#1617197.

REFERENCES
[1] Aydin Abadi, Sotirios Terzis, and Changyu Dong. 2015. O-PSI: delegated private

set intersection on outsourced datasets. In ICT Systems Security and Privacy
Protection. Springer, 3–17.

[2] Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. 2014. Non-

Interactive Secure Computation Based on Cut-and-Choose. In EUROCRYPT 2014
(LNCS), Phong Q. Nguyen and Elisabeth Oswald (Eds.), Vol. 8441. Springer, Hei-

delberg, Germany, Copenhagen, Denmark, 387–404. https://doi.org/10.1007/

978-3-642-55220-5_22

[3] Marina Blanton and Everaldo Aguiar. 2012. Private and Oblivious Set and

Multiset Operations. In 7th ACM Symposium on Information, Computer and
Communications Security (ASIACCS ’12). ACM, New York, NY, USA, 40–41.

https://doi.org/10.1145/2414456.2414479

[4] Ran Canetti and Juan A. Garay (Eds.). 2013. CRYPTO 2013, Part II. LNCS, Vol. 8043.
Springer, Heidelberg, Germany, Santa Barbara, CA, USA.

[5] Hao Chen, Kim Laine, and Peter Rindal. 2017. Fast Private Set Intersection from

Homomorphic Encryption. Cryptology ePrint Archive, Report 2017/299. (2017).

http://eprint.iacr.org/2017/299.

[6] Jung Hee Cheon, Stanislaw Jarecki, and Jae Hong Seo. 2012. Multi-Party Privacy-

Preserving Set Intersection with Quasi-Linear Complexity. IEICE Transactions
95-A, 8 (2012), 1366–1378. http://search.ieice.org/bin/summary.php?id=e95-a_8_

1366

[7] Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Moti Yung. 2012. Effi-

cient Robust Private Set Intersection. Int. J. Appl. Cryptol. 2, 4 (July 2012), 289–303.
https://doi.org/10.1504/IJACT.2012.048080

[8] Emiliano De Cristofaro, Jihye Kim, and Gene Tsudik. 2010. Linear-Complexity
Private Set Intersection Protocols Secure in Malicious Model. Springer Berlin Heidel-

berg, Berlin, Heidelberg, 213–231. https://doi.org/10.1007/978-3-642-17373-8_13

[9] Changyu Dong, Liqun Chen, and Zikai Wen. 2013. When Private Set Inter-

section Meets Big Data: An Efficient and Scalable Protocol. In ACM Confer-
ence on Computer & Communications Security (CCS ’13). ACM, 789–800.

https://doi.org/10.1145/2508859.2516701

[10] Michael J. Freedman, Carmit Hazay, Kobbi Nissim, and Benny Pinkas. 2016.

Efficient Set Intersection with Simulation-Based Security. J. Cryptology 29, 1

(2016), 115–155. https://doi.org/10.1007/s00145-014-9190-0

[11] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. 2005. Key-

word Search and Oblivious Pseudorandom Functions. In TCC 2005 (LNCS), Joe
Kilian (Ed.), Vol. 3378. Springer, Heidelberg, Germany, Cambridge, MA, USA,

303–324.

Session F1: Private Set Intersection CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1269

https://doi.org/10.1007/978-3-642-55220-5_22
https://doi.org/10.1007/978-3-642-55220-5_22
https://doi.org/10.1145/2414456.2414479
http://eprint.iacr.org/2017/299
http://search.ieice.org/bin/summary.php?id=e95-a_8_1366
http://search.ieice.org/bin/summary.php?id=e95-a_8_1366
https://doi.org/10.1504/IJACT.2012.048080
https://doi.org/10.1007/978-3-642-17373-8_13
https://doi.org/10.1145/2508859.2516701
https://doi.org/10.1007/s00145-014-9190-0

[12] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. 2004. Efficient Private

Matching and Set Intersection. In Advances in Cryptology - EUROCRYPT 2004
(Lecture Notes in Computer Science), Vol. 3027. Springer, 1–19. https://doi.org/10.
1007/978-3-540-24676-3_1

[13] Ran Gelles, Rafail Ostrovsky, and Kina Winoto. 2012. Multiparty proximity

testing with dishonest majority from equality testing. In Automata, Languages,
and Programming. Springer, 537–548.

[14] Oded Goldreich. 2009. Foundations of cryptography: volume 2, basic applications.
Cambridge university press.

[15] Shai Halevi, Yehuda Lindell, and Benny Pinkas. 2011. Secure Computation on the

Web: Computing without Simultaneous Interaction. In Advances in Cryptology -
CRYPTO 2011 (Lecture Notes in Computer Science), Phillip Rogaway (Ed.), Vol. 6841.
Springer, 132–150. https://doi.org/10.1007/978-3-642-22792-9_8

[16] Carmit Hazay and Yehuda Lindell. 2010. Efficient secure two-party protocols:
Techniques and constructions. Springer Science & Business Media.

[17] Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. 2017. Scalable

Multi-Party Private Set-Intersection. Cryptology ePrint Archive, Report 2017/027.

(2017). http://eprint.iacr.org/2017/027.

[18] Y. Huang, D. Evans, and J. Katz. 2012. Private Set Intersection: Are Garbled Cir-

cuits Better than Custom Protocols?. In Network and Distributed System Security
(NDSS’12). The Internet Society.

[19] Bernardo A. Huberman, Matt Franklin, and Tad Hogg. 1999. Enhancing Privacy

and Trust in Electronic Communities. In Proceedings of the 1st ACM Conference
on Electronic Commerce (EC ’99). ACM, 78–86.

[20] Stanislaw Jarecki and Xiaomin Liu. 2009. Efficient Oblivious Pseudorandom

Function with Applications to Adaptive OT and Secure Computation of Set

Intersection. In Theory of Cryptography (Lecture Notes in Computer Science),
Vol. 5444. Springer, 577–594. https://doi.org/10.1007/978-3-642-00457-5_34

[21] Adam Kirsch and Michael Mitzenmacher. 2008. Less Hashing, Same Performance:

Building a Better Bloom Filter. Random Struct. Algorithms 33, 2 (Sept. 2008),

187–218. https://doi.org/10.1002/rsa.v33:2

[22] Adam Kirsch, Michael Mitzenmacher, and Udi Wieder. 2008. More Robust Hash-

ing: Cuckoo Hashing with a Stash. In ESA 2008 (Lecture Notes in Computer
Science), Dan Halperin and Kurt Mehlhorn (Eds.), Vol. 5193. Springer, 611–622.

https://doi.org/10.1007/978-3-540-87744-8_51

[23] Ágnes Kiss, Jian Liu, Thomas Schneider, N. Asokan, and Benny Pinkas. 2017. Pri-

vate Set Intersection for Unequal Set Sizes with Mobile Applications. Cryptology

ePrint Archive, Report 2017/670. (2017). http://eprint.iacr.org/2017/670.

[24] Lea Kissner and Dawn Song. 2005. Privacy-preserving Set Operations. In Pro-
ceedings of the 25th Annual International Conference on Advances in Cryptology
(CRYPTO’05). Springer-Verlag, Berlin, Heidelberg, 241–257. https://doi.org/10.
1007/11535218_15

[25] Vladimir Kolesnikov. 2005. Gate Evaluation Secret Sharing and Secure One-

Round Two-Party Computation. In ASIACRYPT 2005 (LNCS), Bimal K. Roy (Ed.),

Vol. 3788. Springer, Heidelberg, Germany, Chennai, India, 136–155.

[26] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. 2016. Ef-

ficient Batched Oblivious PRF with Applications to Private Set Intersection.

Cryptology ePrint Archive, Report 2016/799. http://eprint.iacr.org/2016/799.

[27] Vladimir Kolesnikov, Jesper Buus Nielsen, Mike Rosulek, Ni Trieu, and Roberto

Trifiletti. 2017. DUPLO: Unifying Cut-and-Choose for Garbled Circuits. Cryptol-

ogy ePrint Archive, Report 2017/344. (2017). http://eprint.iacr.org/2017/344.

[28] Ronghua Li and ChuankunWu. 2007. An Unconditionally Secure Protocol for Multi-
Party Set Intersection. Springer Berlin Heidelberg, Berlin, Heidelberg, 226–236.

https://doi.org/10.1007/978-3-540-72738-5_15

[29] Yehuda Lindell and Ben Riva. 2015. Blazing Fast 2PC in the Offline/Online Setting

with Security for Malicious Adversaries. In ACM CCS 15, Indrajit Ray, Ninghui
Li, and Christopher Kruegel: (Eds.). ACM Press, Denver, CO, USA, 579–590.

[30] Catherine A. Meadows. 1986. A More Efficient Cryptographic Matchmaking

Protocol for Use in the Absence of a Continuously Available Third Party. In IEEE
Symposium on Security and Privacy. 134–137.

[31] Atsuko Miyaji and Shohei Nishida. 2015. A Scalable Multiparty Private Set

Intersection. In Network and System Security. Springer, 376–385.
[32] Payman Mohassel and Ben Riva. 2013. Garbled Circuits Checking Garbled

Circuits: More Efficient and Secure Two-Party Computation, See [4], 36–53.

https://doi.org/10.1007/978-3-642-40084-1_3

[33] Moni Naor and Benny Pinkas. 2001. Efficient Oblivious Transfer Protocols. In

Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA ’01). Society for Industrial and Applied Mathematics, Philadelphia, PA,

USA, 448–457. http://dl.acm.org/citation.cfm?id=365411.365502

[34] Kurt Opsahl. 2013. The Disconcerting Details: How Face-

book Teams Up With Data Brokers to Show You Targeted Ads.

https://www.eff.org/deeplinks/2013/04/disconcerting-details-how-facebook-

teams-data-brokers-show-you-targeted-ads. (2013). [Online; accessed

23-May-2016].

[35] Rasmus Pagh and Flemming Friche Rodler. 2001. Cuckoo hashing. In European
Symposium on Algorithms. Springer, 121–133.

[36] Arpita Patra, Ashish Choudhary, and C. Pandu Rangan. 2008. Unconditionally

Secure Multiparty Set Intersection Re-Visited. IACR Cryptology ePrint Archive
2008 (2008), 462. http://eprint.iacr.org/2008/462

[37] Arpita Patra, Pratik Sarkar, and Ajith Suresh. 2016. Fast Actively Secure OT

Extension for Short Secrets. Cryptology ePrint Archive, Report 2016/940. (2016).

http://eprint.iacr.org/2016/940.

[38] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. 2015. Phasing:

Private Set Intersection Using Permutation-based Hashing. In 24th USENIX Secu-
rity Symposium, USENIX Security 15, Jaeyeon Jung and Thorsten Holz (Eds.). 515–

530. https://www.usenix.org/conference/usenixsecurity15/technical-sessions/

presentation/pinkas

[39] Benny Pinkas, Thomas Schneider, and Michael Zohner. 2014. Faster Private

Set Intersection Based on OT Extension. In 23rd USENIX Security Symposium,
USENIX Security 14, Kevin Fu and Jaeyeon Jung (Eds.). USENIX Association, 797–

812. https://www.usenix.org/conference/usenixsecurity14/technical-sessions/

presentation/pinkas

[40] Benny Pinkas, Thomas Schneider, and Michael Zohner. 2016. Scalable Private Set

Intersection Based on OT Extension. Cryptology ePrint Archive, Report 2016/930.

(2016). http://eprint.iacr.org/2016/930.

[41] Amanda Cristina Davi Resende and Diego F. Aranha. 2017. Unbalanced Approxi-

mate Private Set Intersection. Cryptology ePrint Archive, Report 2017/677. (2017).

http://eprint.iacr.org/2017/677.

[42] Peter Rindal. libOTe: an efficient, portable, and easy to use Oblivious Transfer

Library. https://github.com/osu-crypto/libOTe. (????).

[43] Peter Rindal and Mike Rosulek. 2016. Faster Malicious 2-Party Secure Compu-

tation with Online/Offline Dual Execution. In USENIX Security 2016. USENIX
Association.

[44] Peter Rindal and Mike Rosulek. 2017. Improved Private Set Intersection Against

Malicious Adversaries. In Advances in Cryptology - EUROCRYPT 2017 - 36th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part I (Lecture
Notes in Computer Science), Jean-Sébastien Coron and Jesper Buus Nielsen (Eds.),

Vol. 10210. 235–259. https://doi.org/10.1007/978-3-319-56620-7_9

[45] Peter Rindal and Mike Rosulek. 2017. Malicious-Secure Private Set Intersection

via Dual Execution. Cryptology ePrint Archive, Report 2017/769. (2017). http:

//eprint.iacr.org/2017/769.

[46] Yingpeng Sang and Hong Shen. 2008. Privacy Preserving Set Intersection Based

on Bilinear Groups. In Proceedings of the Thirty-first Australasian Conference on
Computer Science - Volume 74 (ACSC ’08). Australian Computer Society, Inc., Dar-

linghurst, Australia, Australia, 47–54. http://dl.acm.org/citation.cfm?id=1378279.

1378290

[47] Adi Shamir. 1980. On the Power of Commutativity in Cryptography. In Automata,
Languages and Programming. 582–595.

[48] Victor Shoup. 2003. NTL: A library for doing number theory. http://www.shoup.

net/ntl. (2003).

[49] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. 2017. Authenticated Garbling

and Efficient Maliciously Secure Two-Party Computation. Cryptology ePrint

Archive, Report 2017/030. (2017). http://eprint.iacr.org/2017/030.

[50] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. 2017. Global-Scale Secure

Multiparty Computation. Cryptology ePrint Archive, Report 2017/189. (2017).

http://eprint.iacr.org/2017/189.

[51] Andrew Chi-Chih Yao. 1986. How to Generate and Exchange Secrets (Extended

Abstract). In 27th FOCS. IEEE Computer Society Press, Toronto, Ontario, Canada,

162–167.

[52] Moti Yung. 2015. From Mental Poker to Core Business: Why and How to De-

ploy Secure Computation Protocols? https://www.sigsac.org/ccs/CCS2015/pro_

keynote.html. (2015). ACM CCS 2015 Keynote Talk.

A THE AUGMENTED SEMI HONEST MODEL
The unconditional zero-sharing protocol is secure in the augmented

semi-honest model. Informally, in this model the parties controlled

by the adversary are allowed to change their inputs at the beginning

of the computation. (The main “power” given to the simulator in

proofs in this model, is that after reading the inputs of the parties

from their input tapes it can change them before sending inputs to

the trusted party.)

The reason for the usage of this model, is the star-like communi-

cation infrastructure that is used by the protocols, where all parties

independently interact with a single party (the “dealer”). A star

structure is a very appealing communication pattern, since it does

Session F1: Private Set Intersection CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1270

https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-642-22792-9_8
http://eprint.iacr.org/2017/027
https://doi.org/10.1007/978-3-642-00457-5_34
https://doi.org/10.1002/rsa.v33:2
https://doi.org/10.1007/978-3-540-87744-8_51
http://eprint.iacr.org/2017/670
https://doi.org/10.1007/11535218_15
https://doi.org/10.1007/11535218_15
http://eprint.iacr.org/2016/799
http://eprint.iacr.org/2017/344
https://doi.org/10.1007/978-3-540-72738-5_15
https://doi.org/10.1007/978-3-642-40084-1_3
http://dl.acm.org/citation.cfm?id=365411.365502
http://eprint.iacr.org/2008/462
http://eprint.iacr.org/2016/940
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/pinkas
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/pinkas
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/pinkas
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/pinkas
http://eprint.iacr.org/2016/930
http://eprint.iacr.org/2017/677
https://github.com/osu-crypto/libOTe
https://doi.org/10.1007/978-3-319-56620-7_9
http://eprint.iacr.org/2017/769
http://eprint.iacr.org/2017/769
http://dl.acm.org/citation.cfm?id=1378279.1378290
http://dl.acm.org/citation.cfm?id=1378279.1378290
http://www.shoup.net/ntl
http://www.shoup.net/ntl
http://eprint.iacr.org/2017/030
http://eprint.iacr.org/2017/189
https://www.sigsac.org/ccs/CCS2015/pro_keynote.html
https://www.sigsac.org/ccs/CCS2015/pro_keynote.html

not require most parties to interact with each other or to coordi-

nate a time in which they are all online. However, it is clear (as

was demonstrated by a lower bound of [15]) that a coalition of the

dealer with some corrupt parties can “save” the state of the protocol

after the interaction between all honest parties and the dealer, and

then continue running the protocol from that state using different

options for the inputs of the corrupt parties. Note, however, that

in the PSI setting the only useful input for the corrupt coalition is

where the input of all its members is equal to the input that the

dealer used in its interactions with the honest parties. Therefore

even though they can choose other inputs and run the protocol

with those inputs, they know in advance that the corresponding

output will be the empty set.

This additional “power” that is given to the adversary is essential

in our protocol since (in order to keep a simple communication

infrastructure) not all parties interact with each other. Therefore

two corrupt parties which only interact with each othermay assume

the power to “use” any input they would like during their execution.

We emphasize, though, that the in our protocol the corrupt par-

ties can only set their input once, and that the only “useful” input

strategy that they can use when computing the multi-party PSI

functionality, is to use the same input set for all corrupt parties,

since any value which is not in the intersection of the inputs of the

corrupt parties will surely not be in the final PSI output.

A detailed discussion of the “power” of the augmented semi-

honest model can be found in [16] Sec. 2.2.3. We present here the

formal definition of this model (Def. 7.4.24 of [14]). We note that this

model was implicitly used by multiple other works related to OT,

such as the private equality test protocol in [13] or the multi-party

PSI protocol in [12].

Definition A.1. (the augmented semi-honest model): Let Π be

a two-party protocol. An augmented semi-honest behavior (with

respect to Π) is a (feasible) strategy that satisfies the following

conditions:

• Entering the execution (this is the only part of the definition
which differs than the standard definition of semi-honest be-
havior): Depending on its initial input, denoted u, the party
may abort before taking any step in the execution of Π. Oth-

erwise it enters the execution with any input u ′ ∈ {0, 1} |u |

of its choice. From this point on, u ′ is fixed.
• Proper selection of a random-tape: The party selects the

random tape to be used in Π uniformly among all strings

of the length specified by Π. That is, the selection of the

random-tape is exactly as specified by Π.
• Proper message transmission or abort: In each step of Π,
depending on its view of the execution so far, the party may

either abort or send a message as instructed by Π. We stress

that the message is computed as Π instructs based on input

u ′, the selected random-tape and all the messages received

so far.

• Output: At the end of the interaction, the party produces

an output depending on its entire view of the interaction.

We stress that the view consists of the initial input u, the
selected random tape, and all the messages received so far.

B HASHING SCHEMES AND PARAMETER
ANALYSIS

In this section we describe a new variant of Cuckoo hashing that

avoids a stash. We analyze its parameters.

There are three parameters[22] that affect the Cuckoo hashing

failure probability: the number of bins ζn, the number of hash

functions h, and the stash size s . Let Prn,ζ ,h (S ≥ s) denote the

probability that when hashing n items into ζn bins (for 1 < ζ <
2) using h hash functions, the stash size exceeds s . [40] proved

that asymptotically, Prn,ζ ,h (S ≥ s) = O(n(1−h)(s+1)) when h ≥

2ζ ln(e
ζ −1).

Our new variant works as follows to insert an item x . There are
(ζ1 + ζ2)n bins.

• First, use traditional Cuckoo hashing with h1 hash functions

to insert x into one of the first ζ1n bins.

• If the first phase fails, then use Cuckoo hashing with h2 = 2

hash functions to insert the final evicted item into the last

ζ2n bins.

The overall procedure fails if the second phase fails to find a suitable

location for the final item. Note that the probability that s items

will require a second phase of hashing is exactly Prn,ζ1,h1 (S ≥ s).
Hence, the failure probability of the overall procedure is:

Pr

n,ζ1,ζ2
(S ≥ 0) =

n∑
s=1

(
Pr

n,ζ1,h1
(S1 ≥ s) Pr

s,ζ2,h2=2
(S2 ≥ 0)

)
(2)

=

n∑
s=1

(
O(n(1−h1)(s+1))O(s−1)

)
=

n∑
s=1

O(
n(1−h1)(s+1)

s
)

≤

∞∑
s=1

O(
n(1−h1)(s+1)

s
)

≤ O(n1−h1 log
2
(

nh1

nh1 − n
))

Equation 2 allows us empirically estimate a concrete failure

probability given a set of parameters {n,h1,h2, ζ1, ζ2}. We first fix

the number of hash functions h1 = 3, and determine necessary the

scale of bins ζ1, ζ2 such that no stash is required (i.e. s = 0) except

with probability < 2
−λ

.

To obtain concrete numbers of ζ1 when ζ2 fixed, we run 2
30

repetition of our Cuckoo hashing scheme, where we mapped n ∈
{27, 28, 29, 210, 211} items to nζ1 bins using h1 hash functions and

then mapping all failed items to nζ2 bins using h2 hash functions.

We recorded the scale ζ1 in Figure 12 with the solid line. To achieve

the failure probability for larger n, we use linear regression by a

variable n′ = n−2 log
2
(n3

n3−n) to extrapolate the ζ1. We substitute

n′ back to n and show the relationship between n and the predicted

ζ1 by the dash line in Figure 12. Table 2 shows the extrapolated

scale ζ1 for the Cuckoo hashing failure probability {230, 240}. We

observe that for n = 2
20
, our hashing scheme needs 1.3n bins with

no stash size.

Simple hashing bounds.Moreover, we also need to guarantee

that the maximum bin size β1, β2 is small when using Simple hash-

ing to map n items to nζ1 bins and nζ2 bins with no overflow. [40]

Session F1: Private Set Intersection CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1271

7 8 12 16 20 24

20

30

40

50

60

Number of Elements n = 2
x

E
r
r
o
r
P
r
o
b
a
b
i
l
i
t
y
2
−
y

ζ1 = 1.12

ζ1 = 1.13

ζ1 = 1.14

ζ1 = 1.15

ζ1 = 1.17

Figure 12: Required number of binsnζ1 in first step of bucket
allocation of our hashing scheme. The solid lines shows the
actualmeasurements, the dashed lineswere extrapolated us-
ing linear regression.

shows that the probability of “n balls are mapped at random tom
bins, and the most occupied bin has at least k balls" is

Pr(∃bin with ≥ k balls) ≤ m(
en

mk
)k (3)

We evaluate Eq. 3 with the set sizes n ∈ {212, 216, 220, 224}, and
depict the maximum bin size {βi | i ∈ {1, 2}} for the Simple

hashing failure probability {230, 240} in Table 2.

Session F1: Private Set Intersection CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1272

	Abstract
	1 Introduction
	1.1 State of the Art for Two-Party PSI
	1.2 State of the Art for Multi-party PSI
	1.3 Our Contributions

	2 Preliminaries
	2.1 Secure Computation
	2.2 Cuckoo Hashing

	3 Programmable OPRF
	3.1 Definitions
	3.2 A Construction Based on Polynomials
	3.3 A Construction Based on Bloom Filters
	3.4 Table-Based Construction

	4 Extending OPPRF to Many Queries
	5 Multi-Party PSI
	5.1 Conditional Zero-Sharing
	5.2 Conditional Reconstruction
	5.3 Details and Discussion

	6 Further Optimizations
	6.1 PSI in Augmented Semi-Honest Model
	6.2 Reducing OPPRF Hint Size
	6.3 3-party PSI in Standard Semi-Honest Model

	7 Implementation and Performance
	7.1 Optimized PSI, Augmented Model
	7.2 Standard Semi-Honest PSI

	References
	A The Augmented Semi Honest Model
	B Hashing Schemes and Parameter Analysis

