
Fast Private Set Intersection from Homomorphic Encryption
Hao Chen

Microsoft Research, WA, USA
haoche@microsoft.com

Kim Laine
Microsoft Research, WA, USA
kim.laine@microsoft.com

Peter Rindal
Oregon State University, OR, USA

rindalp@oregonstate.edu

ABSTRACT

Private Set Intersection (PSI) is a cryptographic technique that al-
lows two parties to compute the intersection of their sets without
revealing anything except the intersection. We use fully homo-
morphic encryption to construct a fast PSI protocol with a small
communication overhead that works particularly well when one of
the two sets is much smaller than the other, and is secure against
semi-honest adversaries.

The most computationally efficient PSI protocols have been con-
structed using tools such as hash functions and oblivious transfer,
but a potential limitation with these approaches is the communi-
cation complexity, which scales linearly with the size of the larger
set. This is of particular concern when performing PSI between
a constrained device (cellphone) holding a small set, and a large
service provider (e.g. WhatsApp), such as in the Private Contact
Discovery application.

Our protocol has communication complexity linear in the size
of the smaller set, and logarithmic in the larger set. More precisely,
if the set sizes are Ny < Nx, we achieve a communication over-
head of O(Ny logNx). Our running-time-optimized benchmarks
show that it takes 36 seconds of online-computation, 71 seconds
of non-interactive (receiver-independent) pre-processing, and only
12.5MB of round trip communication to intersect five thousand
32-bit strings with 16 million 32-bit strings. Compared to prior
works, this is roughly a 38–115× reduction in communication with
minimal difference in computational overhead.

KEYWORDS

private set intersection; fully homomorphic encryption

1 INTRODUCTION

1.1 Private Set Intersection

Private Set Intersection (PSI) refers to a setting where two parties
each hold a set of private items, and wish to learn the intersec-
tion of their sets without revealing any information except for
the intersection itself. Over the last few years, PSI has become
truly practical for a variety of applications due to a long list of
publications, e.g. [9, 18, 37, 39, 46, 48–50, 53]. The most efficient
protocols have been proposed by Pinkas et al. [50] and Kolesnikov

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’17, October 30-November 3, 2017, Dallas, TX, USA

© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00
https://doi.org/10.1145/3133956.3134061

et al. [37]. While these protocols are extremely fast, their communi-
cation complexity is linear in the sizes of both sets. When one set is
significantly smaller than the other, the communication overhead
becomes considerable compared to the non-private solution, which
has communication linear in the size of the smaller set.

1.2 Fully Homomorphic Encryption

Fully homomorphic encryption is a powerful cryptographic primitive
that allows arithmetic circuits to be evaluated directly on encrypted
data, as opposed to having to decrypt the data first. Despite the basic
idea being old [54], the first construction was given only in 2009 by
Craig Gentry [25]. While the early fully homomorphic encryption
schemes were impractical, in only a few years researchers managed
to construct much more efficient schemes (e.g. [8, 12, 13, 21, 28, 41]),
bringing practical applications close to reality [26, 29, 45].

At first glance, it might seem easy to use fully homomorphic
encryption to achieve a low communication cost in PSI. The party
with smaller set sends its encrypted set to the other party, who
evaluates the intersection circuit homomorphically, and sends back
the encrypted result for the first party to decrypt. The total com-
munication is only

2 × ciphertext expansion × size of the smaller set.

However, a naive implementation of the above idea will result in
a very inefficient solution. The reason is that—for all known fully
homomorphic encryption schemes—the computational cost not
only grows with the size of the inputs (in this case, the sum of the
two set sizes), but also grows rapidly with the depth of the circuit.
Thus our main challenge is to come up with various optimizations
to make the solution practical, and even faster than the state-of-
the-art protocols in many scenarios. In short, we will show that it
is possible to construct a fast fully homomorphic encryption based
PSI protocol, with a low communication overhead.

1.3 Related Work

Meadows [44] proposed one of the first secure PSI protocols, which
was later fully described by Huberman, Franklin and Hogg in [34].
This approach was based on public-key cryptography, and lever-
aged the multiplicative homomorphic property of Diffie-Hellman
key exchange. While these schemes have relatively good communi-
cation cost, the running time can be prohibitive when the set sizes
become large due to the need to perform modular exponentiation
for every item in both sets several times.

Since [34], several other paradigms have been considered. Freed-
man et al. [23] proposed a protocol based on oblivious polynomial
evaluation. This approach leveraged partially homomorphic encryp-
tion, and was later extended to the malicious setting in [15, 31, 32].
Another approach was proposed by Hazay et al. [30], and was based
on a so-called Oblivious PRF.

Session F1: Private Set Intersection CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1243

https://doi.org/10.1145/3133956.3134061

Recently, more promising approaches based onOblivious Transfer
(OT) have been invented [35, 46]. At the time, by far the most
efficient scheme was introduced by Pinkas et al. [49], and later
improved in [37, 46, 50]. We will denote the two parties engaged in
a PSI protocol by sender and receiver, and maintain that after the
execution of the protocol, the receiver learns the intersection of the
sets, whereas the sender learns no information. The high level idea
of the OT-based protocols is that the receiver engages in many OTs
with the sender, and obliviously learns a randomized encoding for
each item in its set, without revealing which values were encoded.
The sender can then encode its items locally, and send them to
receiver, who computes a plaintext intersection on the encodings.
Due to the encodings being randomized, they do not reveal any
information beyond the intersection. One inherent property of this
approach is that the communication is linear in both set sizes due to
the need to encode and send all of the encodings. The approach we
take is similar, except that we use fully homomorphic encryption
in place of Oblivious Transfer.

Yet another OT-based approach was introduced by Dong et al.
[18], which builds on a data structure known as a Bloom filter. This
data structure allows efficient membership test by setting specific
bits in a long bit array. Importantly, the bit-wise AND of two Bloom
filters is itself a valid Bloom filter for the intersection of the two
original sets. With a fewmodifications to this idea, a secure protocol
can then be constructed by allowing one of the parties to learn the
bit-wise AND of the two Bloom filters with the use of OT. This
approach requires a greater amount of communication than the
approach introduced by Pinkas et al. [49], and results in inferior
performance.

A commonly cited solution for PSI is to use generic secure multi-
party computation protocols to compute the intersection. Huang et
al. [33] was the first to implement such a protocol using garbled cir-
cuits, which [49] later improved, and provided an implementation.
They showed that a garbled circuit approach requires significantly
more communication compared to OT-based methods. For a more
complete survey of practical approaches, we point the reader to [50].

A very efficient server-aided protocol has also been proposed by
Kamara et al. [36]. In this setting, it is assumed that there exists a
non-colluding server. The basic idea is that a random function is
sampled between the two parties which is applied to the elements
in their respective sets. These encodings are then sent to the server
who reports the intersection. While conceptually simple and very
efficient, the reliance on such as server is undesirable. Moreover,
the communication complexity is linear in both set sizes.

In all of the above protocols it is assumed that the set sizes (or
upper bounds) are made public at the beginning of the protocol.
Ateniese et al. [6] introduced a protocol based on RSA accumula-
tors [7], which relaxes this assumption by hiding the receiver’s set
size. This protocol works by having the receiver construct and send
an RSA accumulator for its set. The sender can then construct a
response for each of its items, which allows the receiver to test
whether they were contained in the RSA accumulator. An impor-
tant property of the RSA accumulator is that its size is small, and
independent of the receiver’s set size. As such, this protocol is most
interesting when the receiver has a set much larger than the sender.

In a follow-up work Bradley et al. [10] extended this protocol to im-
posing an upper bound on the number of items in the accumulator,
thereby preventing a so-called “full-domain attack” by the receiver.

1.4 Contributions and Roadmap

As our discussion has shown, all of the prior PSI protocols require
both parties to encode and send data over the network that is pro-
portional to their entire sets. However, the trivial insecure solution
only requires the smaller set to be sent. We address this gap by
constructing the first secure and practical PSI protocol with low
communication overhead based on a leveled fully homomorphic
encryption scheme.

Our basic protocol requires communication linear in the smaller
set, achieving optimal communication that is on par with the naive
solution.We then combine an array of optimizations to significantly
reduce communication size, computational cost, and the depth of
the homomorphic circuit, while only adding a logarithmic overhead
to the communication. In summary, we

• Propose a basic PSI protocol based on fully homomorphic
encryption;

• Combine various optimizations to vastly reduce the com-
putational and communication cost;

• Use fine-tuned fully homomorphic encryption parameters
for the homomorphic computation to avoid the costly boot-
strapping operation [25, 26], and to achieve good perfor-
mance;

• Develop a prototype implementation in C++ and demon-
strate a 38–115× reduction in communication over previ-
ous state-of-the-art protocols.

In Section 2 we review the setups and tools we use to build the
protocol: the PSI setup and its definition of security, and prelimi-
naries on (leveled) fully homomorphic encryption. In Section 3 we
propose our basic strawman PSI protocol. Then, in Section 4, we
apply optimizations to vastly improve the strawman protocol and
make it practical. The formal description of the optimized protocol,
along with a security proof, is presented in Section 5. In Section 6
we provide a performance analysis of our implementation, and
compare our performance results to [50] and [37].

2 PRELIMINARIES

2.1 Notations

Throughout this paper, we will use the notation [n] to denote the
set {1, ...,n}. The computational and statistical security parameters
will be denoted by κ, λ, respectively. Other parameters include:

• X ,Y ⊆ {0, 1}σ are the sender’s and receiver’s sets, each of
size Nx, Ny;

• m denotes the size of a hash table, andd denotes the number
of items to be inserted into a hash table;

• n,q and t denote the encryption parameters described
in Section 2.3;

• h denotes the number of hash functions used for cuckoo
hashing in Section 4.2;

• B denotes the bin size for the simple hashing scheme de-
scribed in Section 4.2;

• ℓ denotes thewindowing parameter described in Section 4.3.1;

Session F1: Private Set Intersection CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1244

• α denotes the partitioning parameter described in Sec-
tion 4.3.2.

2.2 Private Set Intersection

We use standard notations and call the two parties engaging in PSI
the sender and the receiver. The sender holds a set X of size Nx, and
the receiver holds a setY of sizeNy. Both sets consist ofσ -bit strings.
We always assume the set sizes Nx and Ny are public. The ideal
PSI functionality computes the intersection, outputs nothing to the
sender, and X ∩ Y to the receiver. We construct a new protocol for
PSI from fully homomorphic encryption, and prove it to be secure
in the semi-honest security model, where both parties correctly
follow the protocol, but may try to learn as much as possible from
their view of the protocol execution.

Our protocol is particularly powerful when the sender’s set is
much larger than the receiver’s set. Hence we assume Nx ≫ Ny
throughout the paper, even though the protocol works for arbitrary
set sizes with no changes. More precisely, we achieve a communica-
tion complexity of O(Ny logNx). Also, we require only the sender
to perform work linear in the larger set size Nx. Intuitively, the
receiver encrypts and sends its set to the sender, who computes the
intersection on homomorphically encrypted data by evaluating an
appropriate comparison circuit. The output is then compressed to
much smaller size using homomorphic multiplication, and sent back
to the receiver for decryption. We note that the receiver only per-
forms relatively light computation in the protocol, i.e. encryptions
and decryptions of data linear in its set size Ny. This is particularly
useful when the receiver is limited in its computational power, e.g.
when the receiver is a mobile device.

2.2.1 Private contact discovery. One particularly interesting ap-
plication for our PSI protocol is private contact discovery. In this
setting, a service provider, e.g.WhatsApp, has a set of several mil-
lion users. Each of these users holds their own set of contacts, and
wants to learn which of them also use the service. The insecure
solution to this problem is to have the user send the service provider
their set of contacts, who then performs the intersection on behalf
of the user. While this protects the privacy of the service provider,
it leaks the user’s private contacts to the service provider.

While PSI offers a natural solution to this problem, one potential
issue with applying existing protocols to this setting is that both
the communication and computation complexity for both parties
is linear in the larger set. As a result, a user who may have only
a few hundred contacts has to receive and process data linear in
the number of users that the service has, resulting in a suboptimal
protocol for constrained hardware, such as cellphones. This problem
was initially raised in an article by Moxie Marlinspike from Open

Whisper Systems—the company that developed the popular secure
messaging app Signal—when they were trying to deploy PSI for
contact discovery [43]. Our PSI protocol addresses this issue by
allowing the constrained devices to process and receive data that
is linear in only their set size, and only logarithmic in the service
provider’s set size. Moreover, the major part of the computation
can be performed by the service provider in a large data center,
where processing power is relatively inexpensive, whereas the user
only performs a light computation.

2.3 Leveled Fully Homomorphic Encryption

Fully homomorphic encryption schemes are encryption schemes
that allow arithmetic circuits to be evaluated directly on ciphertexts,
ideally enabling powerful applications such as outsourcing of com-
putation on private data [25, 54]. For improved performance, the
encryption parameters are typically chosen to support only circuits
of a certain bounded depth (leveled fully homomorphic encryption),
and we use this in our implementation.

Many of the techniques and algorithms presented in this paper
are agnostic to the exact fully homomorphic encryption scheme
that is being used, but for simplicity we restrict to RLWE-based
cryptosystems using power-of-2 cyclotomic rings of integers [42].
In such cryptosystems the plaintext space is Zt [x]/(xn + 1), and
the ciphertext space is Zq [x]/(xn + 1), where n is a power of 2 and
t ≪ q are integers. It is customary to denote R = Z[x]/(xn + 1),
so that the plaintext and ciphertext spaces become Rt = R/tR,
and Rq = R/qR, respectively. We assume the fully homomorphic
encryption scheme to have plaintext and ciphertext spaces of this
type, and the notation (n,q, t) will always refer to these parameters.
For example, the Brakerski-Gentry-Vaikuntanathan (BGV) [12] and
the Fan-Vercauteren (FV) [21] schemes have this structure.

A leveled fully homomorphic encryption scheme can be de-
scribed by the following set of randomized algorithms:

• FHE.Setup(1λ): Given a security parameter λ, outputs a
set of encryption parameters parms.

• FHE.KeyGen(parms): Outputs a secret key sk and a public
key pk. Optionally outputs one or more evaluation keys
evk.

• FHE.Encrypt(m, pk): Given message m ∈ Rt , outputs ci-
phertext c ∈ Rq .

• FHE.Decrypt(c, sk): Given ciphertext c ∈ Rq , outputs mes-
sagem ∈ Rt .

• FHE.Evaluate(C, (c1, . . . , ck), evk): Given an arithmetic cir-
cuit f with k input wires, and inputs c1, . . . , ck with ci →
FHE.Encrypt(mi , pk), outputs a ciphertext c such that

Pr [FHE.Decrypt(c, sk) , f (m1, . . . ,mk)] = negl(λ) .

We also require that the size of the output of FHE.Evaluate
is not more than polynomial in λ independent of what f
is (compactness) (see e.g. [4]).

We say that a fully homomorphic encryption scheme is secure
if it is IND-CPA secure, and weakly circular secure, which means
that the scheme remains secure even when the adversary is given
encryptions of the bits of the secret key. A fully homomorphic
encryption scheme achieves circuit privacy if the distribution of the
outputs of any fixed homomorphic evaluation is indistinguishable
from the distribution of fresh encryptions of the plaintext outputs.
In this way, one can effectively hide the circuit that was evaluated
on encrypted data. We refer the reader to [4, 12, 19] for more details.

3 THE BASIC PROTOCOL

We describe our basic protocol in Figure 1 as a strawman protocol.
The receiver encrypts each of its items y, and sends them to the
sender. For each y, the sender then evaluates homomorphically
the product of differences of y with all of the sender’s items x ,
randomizes the product by multiplying it with a uniformly random

Session F1: Private Set Intersection CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1245

non-zero plaintext, and sends the result back to the receiver. The
result decrypts to zero precisely when y is in the sender’s set, and
to a uniformly random non-zero plaintext otherwise, revealing no
information about the sender’s set to the receiver.

To be more precise, we assume from now on that the plaintext
modulus t in our FHE scheme is a prime number, large enough to
encode σ -bit strings as elements of Zt . We also temporarily restrict
the plaintext space to its subring of constant polynomials (this
restriction will be removed in Section 4.1), and assume plaintexts to
be simply elements of Zt . Recall that the sizes of the sets X and Y ,
and the (common) bit-length σ of the items, are public information.

Input: Receiver inputs set Y of size Ny; sender inputs set X of size Nx.
Both sets consist of bit strings of length σ . Nx, Ny, and σ are public.
Output: Receiver outputs X ∩ Y ; sender outputs ⊥.

(1) Setup: Sender and receiver jointly agree on a fully homomor-
phic encryption scheme. Receiver generates a public-secret
key pair for the scheme, and keeps the secret key to itself.

(2) Set encryption: Receiver encrypts each element yi in its set
Y using the fully homomorphic encryption scheme, and sends
the Ny ciphertexts (c1, . . . , cNy) to sender.

(3) Computing intersection: For each ci , sender
(a) samples a random non-zero plaintext element ri ;
(b) homomorphically computes

di = ri
∏
x∈X

(ci − x) .

Sender return the ciphertexts (d1, . . . , dNy) to receiver.
(4) Reply extraction: Receiver decrypts the ciphertexts
(d1, . . . , dNy) and outputs

X ∩ Y = {yi : FHE.Decrypt(di) = 0} .

Figure 1: Basic PSI protocol.

We have the following informal theorem with regards to the
security and correctness of the basic protocol.

Theorem 3.1 (informal). The protocol described in Figure 1 se-

curely and correctly computes the private set intersection of X and

Y in the semi-honest security model, provided that the fully homo-

morphic encryption scheme is IND-CPA secure and achieves circuit

privacy.

Proof sketch. Receiver’s security is straightforward: the re-
ceiver sends an array of ciphertexts, which looks pseudorandom to
the sender since the fully homomorphic encryption scheme is IND-
CPA secure. For sender’s security, we note that the receiver’s view
consists of an array of ciphertexts. It follows from circuit privacy
that the receiver only learns the decryptions of these ciphertexts,
and nothing more.

For a fixed index i , we have

FHE.Decrypt(di) = ri
∏
x ∈X
(yi − x) ,

which is zero precisely when yi ∈ X (correctness), and otherwise
a uniformly random element in Zt \ {0}, because Zt is a field.
Thus, the receiver learns no additional information beyond the
intersection X ∩ Y . �

This basic strawman protocol is extremely inefficient: it requires
the sender to perform O(NxNy) homomorphic multiplications and
additions, and the depth of the circuit is high, pushing the FHE
parameter sizes to be huge. In addition, the sender and the receiver
need to communicate O(Ny) FHE ciphertexts, which can be pro-
hibitive even for state-of-the-art fully homomorphic encryption
schemes. It is therefore quite surprising that the protocol becomes
very efficient when combined with the enhancements described in
the next section.

4 OPTIMIZATIONS

4.1 Batching

Our first step to improve performance is through the use of batching,
which is a well-known and powerful technique in fully homomor-
phic encryption to enable SIMD (Single Instruction, Multiple Data)
operations on ciphertexts. We give a brief explanation here, and
refer the reader to [11, 26, 29, 38, 55] for more details and example
applications.

For suitable choices of the plaintext modulus t , there is a ring iso-
morphism from the plaintext space Rt to Znt . As an example, a con-
stant polynomial a ∈ Rt corresponds to the vector (a, . . . ,a) ∈ Znt .
Moreover, this isomorphism translates polynomial additions and
multiplications into coefficient-wise additions and multiplications
in each of the n fields Zt . To simplify the exposition, we use the
polynomial and vector notations for plaintexts interchangeably,
omitting the conversions from one representation to the other.

We can apply batching to reduce both the computational and
communication cost of the basic protocol as follows. The receiver
groups its items into vectors of length n, encrypts them, and sends
Ny/n ciphertexts to the sender. Upon seeing each ciphertext ci , the
sender samples a vector ri = (ri1, . . . , rin) ∈ (Z∗t)

n of uniformly
random non-zero elements of Zt , homomorphically computes di =
ri
∏

x ∈X (ci − x), and sends it back to the receiver. Note that these
modifications do not affect correctness or security, since the exact
same proof can be applied per each vector coefficient.

The batching technique allows the sender to operate on n items
from the receiver simultaneously, resulting in n-fold improvement
in both the computation and communication. Since in typical casesn
has size several thousands, this results in a significant improvement
over the basic protocol.

4.2 Hashing

Even with the batching techniques of Section 4.1, the sender still
needs to encode each of its set elements into separate plaintexts, and
individually compare them to the receiver’s items. Instead, it would
be nice if the sender could also take advantage of batching. We will
achieve this through the use of hashing techniques. Specifically, we
use batching in conjunction with cuckoo hashing and permutation-

based hashing, which have been developed and explored in detail
in the context of PSI in e.g. [48, 49].

Before jumping into the technicalities of cuckoo hashing and
permutation-based hashing, we start with a high-level explanation
of why hashing is beneficial in our context. Suppose the two parties
hash the items in their sets into two hash tables using some agreed-
upon deterministic hash function. Now they only need to perform

Session F1: Private Set Intersection CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1246

a PSI for each bin, since items in different bins are necessarily
different.

One important point is that all bins must be padded to a fixed
size to maintain security. Observe that the bins prior to padding
will have uneven loads, and the load of a specific bin (the number
of items mapped into the bin) can reveal additional information
beyond the intersection. To overcome this, we need to pad each bin
with dummy items up to a pre-determined maximum size.

The simple hashing technique just described significantly reduces
the complexity of our protocol. It is well known that hashing d
items into a hash table of sizem = d results in a maximum load of
O(logd) with high probability. For example, in the case that both
parties have d = Nx = Ny items, the overall complexity of the basic
protocol reduces toO(d log2 d), where the log2 d factor comes from
performing the basic PSI protocol on a single bin. Next, we will
reduce the complexity even further via better hashing techniques.

4.2.1 Cuckoo hashing. Cuckoo hashing [16, 22, 47] is a way to
build dense hash tables by using h > 1 hash functions H1, ...,Hh .
To insert an item x , we choose a random index i from [h], and insert
the tuple (x , i) at location Hi (x) in the table. If this location was
already occupied by a tuple (y, j), we replace (y, j)with (x , i), choose
a random j ′ from [h] \ {j}, and recursively re-insert (y, j ′) into the
table. Form ≈ d and fairly small h, cuckoo hashing succeeds with
very high probability, i.e. the recursive re-insertion process always
succeeds before a pre-determined upper bound on the recursion
depth is reached. We will discuss the success probability of cuckoo
hashing in Section 4.2.3.

In order to apply cuckoo hashing to our PSI protocol, we must
ensure that bin-wise comparisons will always yield the correct inter-
section. This is done by letting the receiver perform cuckoo hashing
withm & Ny bins. The sender must insert each of its items into a
two-dimensional hash table using all h hash functions H1, ...,Hh
(simple hashing), because there is no way for it to know which one
of the hash functions the receiver eventually ended up using for
the items in the intersection. To determine the maximum load on
the sender’s side, we apply a standard balls-into-bins argument.
Concretely, when inserting d = hNx balls intom bins, we have

Pr[at least one bin has load > B]

≤ m
d∑

i=B+1

(
d

i

) (
1
m

)i (
1 − 1

m

)d−i
.

(1)

Our default assumption is that the sender (who performs simple
hashing) has a larger set, so that d > m logm. In this case B is
upper-bounded by d/m+O(

√
d logm/m)with high probability [51].

4.2.2 Permutation-based hashing. Independent of the exact hash-
ing scheme, permutation-based hashing [3] is an optimization to
reduce the length of the items stored in the hash tables by encoding
a part of an item into the bin index. For simplicity, we assumem
is a power of two, and describe permutation-based hashing only
in connection with cuckoo hashing. To insert a bit string x into
the hash table, we first parse it as xL ∥xR , where the length of xR is
equal to log2m. The hash functionsH1, ...,Hh are used to construct
location functions as

Loci (x) = Hi (xL) ⊕ xR , 1 ≤ i ≤ h ,

which we will use in cuckoo hashing. Moreover, instead of insert-
ing the entire tuple (x , i) into the hash table as in regular cuckoo
hashing, we only insert (xL , i) at the location specified by Loci (x).

The correctness of the PSI protocol still holds after applying
permutation-based hashing. The reason is if (xL , i) = (yL , j) for two
items x and y, then i = j and xL = yL . If in addition these are found
in the same location, thenHi (xL)⊕xR = Hj (yL)⊕xR = Hj (yL)⊕yR ,
so xR = yR , and hence x = y. The lengths of the strings stored
in the hash table are thus reduced by log2m − ⌈log2 h⌉ bits. The
complete hashing routine is specified in Figure 2.

Input: Receiver inputs set Y of size Ny; sender inputs set X of size Nx.
Both sets consist of bit strings of length σ . Nx, Ny, σ are public. Both
parties input integers h,m, B and a set of hash function H1, ..., Hh :
{0, 1}σ−log2m → {0, 1}log2m . The location functions Loci is defined
with respect to Hi for i ∈ [h].
Output: Receiver outputs a permutation-based cuckoo hash table with
the items in Y inserted, or ⊥. Sender outputs a permutation-based hash
table with the items in X inserted using simple hashing and all location
functions, or ⊥.

(1) [Sender] Let Bx be an array of m bins, each with capacity
B , and value {(⊥, ⊥)}B . For each x ∈ X and i ∈ [h], the
sender samples j ← [B] s.t. Bx[Loci (x)][j] = ⊥, and sets
Bx[Loci (x)][j] := (xL, i). If the sampling fails due to a bin
being full, the sender outputs ⊥. Otherwise it outputs Bx.

(2) [Receiver] LetBy be an array ofm bins, each with capacity 1,
and value (⊥, ⊥). For each y ∈ Y , the receiver
(a) sets w = y , and i ← [B];
(b) defines and calls the function Insert(w, i) as follows:

swap (w, i) with the entry at By[Loci (w)]. If (w, i) ,
(⊥, ⊥), recursively call Insert(w, j), where j ← [h] \ {i }.

If for any y ∈ Y the recursive calls to Insert exceeds the
system limit, the receiver halts and outputs ⊥. Otherwise it
outputs By.

Figure 2: Hashing routine.

4.2.3 Hashing failures. In an unlikely event where cuckoo hash-
ing fails, it could leak some information of the receiver’s set to the
sender. To prevent this, we must ensure that with overwhelming
probability the cuckoo hashing algorithm will succeed. While some
asymptotic results exist for estimating the failure probability of
cuckoo hashing [17, 24], the hidden constants are difficult to deter-
mine precisely. Instead, to obtain optimal parameters, we choose
to determine the failure probability using empirical methods. The
general technique we use is similar to that of [50], with two excep-
tions: first, we omit an auxiliary data structure known as the stash
due to its incompatibility with the fully homomorphic encryption
approach; second, we primarily focus on h = 3 in our experiments
(see below), whereas [50] focused on h = 2.

We start by fixing the cuckoo hash table consisting ofm bins,
and vary the number for items d < m to be inserted. For each
(d,m) pair, we run the cuckoo hashing algorithm 230 times. For
d ≪m, we find that the algorithm never fails in the experiments.
To compute the required ratio ϵ = m/d to achieve a statistical
security level of λ ≥ 40 (i.e. cuckoo hashing fails with probability
at most 2−40), we begin by setting ϵ to a value slightly larger than
one, and gradually increase it until we can expect zero hashing

Session F1: Private Set Intersection CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1247

failures. From this we observe that λ increases linearly with the
scaling factor ϵ when h ≥ 3.

Over the course of our experiments, we observed that cuckoo
hashing with no stash performs very poorly when h = 2, which
was also observed and discussed in detail in [50], which is why
we shift our focus to h = 3. Furthermore, the marginal gain of
h = 4 is outweighed by the increased cost of simple hashing. By
applying linear regression to the empirical data for λ ≥ 0, we
observe that λ = 124.4ϵ − 144.6 form = 16384, and λ = 125ϵ − 145
form = 8192. To achieve a statistical security level of λ = 40, the
maximum number of items that can be cuckoo hashed into 8192
bins with h = 3 is therefore 5535. Form = 16384, the corresponding
maximum number of items is 11041. The respective simple hashing
parameter for the given hash table size and differentd = hNx values
are given in Table 1.

4.2.4 Dummy values. In order to make the sender’s simple hash
table evenly filled, we need to pad each bin with dummy items after
hashing. We let the sender and receiver fix two different dummy
values from Zt , as long as they do not occur as legitimate values.
For example, if legitimate values have at most σ bits, then we can
set the receiver’s dummy value to 2σ , and the sender’s dummy
value to 2σ+1 − 1.

4.2.5 Hashing to a smaller representation. In many cases the
total number of items Nx + Ny is much smaller than the number
2σ of all possible strings of length σ . Since the performance of our
protocol will degrade with increasing string length, it is beneficial
for the parties to compress their strings with an agreed-upon hash
function to a fixed length σmax, and then execute the PSI protocol
on these hashed strings. Indeed, this is a well-known technique in
the PSI community.

More precisely, when a total of Nx + Ny random strings are
hashed to a domain of size 2σmax , the probability of a collision is
approximately (Nx +Ny)2/2σmax+1. For a statistical security param-
eter λ, we require that Pr[collision occurs] ≤ 2−λ . Therefore, the
compressed strings should have length at least

σmax = 2 log2(Nx + Ny) + λ − 1.

Now we apply permutation-based cuckoo hashing to the com-
pressed strings, further reducing the string length to

σmax − log2m + ⌈log2 h⌉ .

In addition, we need to reserve two more values in the plaintext
space for the dummy values discussed in Section 4.2.4. Thus, by
choosing the encryption parameter t so that

log2 t > σmax − log2m + ⌈log2 h⌉ + 1 (2)

we can accommodate arbitrarily long strings in our PSI protocol.

4.2.6 Combining with batching. It is straightforward to combine
hashing techniques introduced in this section with the batching
technique in Section 4.1. After the receiver hashes its items into a
table of sizem, it parses the table intom/n vectors of length n. The
receiver then encrypts each vector using batching, and proceeds
as usual. Similarly, the sender performs the same batching step for
each of the B columns of its two-dimensional hash table, resulting in
Bm/n plaintext vectors. The rest of the protocol remains unchanged,

and we see that adding batching to the hashing techniques provides
an n-fold reduction in both computation and communication.

4.3 Reducing the Circuit Depth

With the optimizations discussed in Section 4.1 and Section 4.2, our
protocol already achieves very low communication cost: typically
just a few homomorphically encrypted ciphertexts. Unfortunately,
the depth of the arithmetic circuit that needs to be homomorphically
evaluated is still O(logNx), which can be prohibitively high for
currently known fully homomorphic encryption schemes.

We use two tricks—windowing and partitioning—to critically
reduce this depth. For simplicity of exposition, we will discuss how
these two tricks work over the basic protocol, and briefly explain
how to combine them with previous optimizations.

4.3.1 Windowing. We use a standard windowing technique to
lower the depth of the arithmetic circuit that the sender needs
to evaluate on the receiver’s homomorphically encrypted data,
resulting in a valuable computation-communication trade-off.

Recall that in the basic protocol, for each itemy ∈ Y , the receiver
sends one ciphertext c = FHE.Encrypt(y) to the sender, who sam-
ples a random element r in Zt \ {0}, homomorphically evaluates
r
∏

x ∈X (c − x), and sends the result back to the receiver. If the
receiver sends encryptions of extra powers of y, the sender can use
these powers to evaluate the same computation with a much lower
depth circuit. More precisely, for a window size of ℓ bits, the receiver
computes and sends c(i, j) = FHE.Encrypt(yi ·2

ℓj
) to the sender for

all 1 ≤ i ≤ 2ℓ − 1, and all 0 ≤ j ≤ ⌊log2(Nx)/ℓ⌋. For example, when
ℓ = 1, the receiver sends encryptions of y,y2,y4, . . . ,y2⌊log2 Nx⌋ .

This technique results in a significant reduction in the circuit
depth. To see this, we write

r
∏
x ∈X
(y − x) = ryNx + raNx−1y

Nx−1 + . . . + ra0 . (3)

If the sender only has an encryption of y, it needs to compute at
worst the product ryNx , which requires a circuit of depth ⌈log2(Nx+
1)⌉. Now if the encryptions c(i, j) are already given to the sender,
then we can separate the sender’s computation into two steps. First,
the sender computes an encryption of yi for all 0 ≤ i ≤ Nx. The
sender needs to compute at worst a product of ⌊log2(Nx)/ℓ⌋ + 1
terms, requiring a circuit of depth ⌈log2(⌊log2(Nx)/ℓ⌋ + 1)⌉. In an
extreme case, if the receiver gives the sender encryptions of all
powers of y up to yNx , the depth in this step becomes zero. Then,
the sender computes a dot product of encryptions ofyi (0 ≤ i ≤ Nx)
with the vector of coefficients (r , raNx−1, . . . , ra0) in plaintext from
its own data. This second step has multiplicative depth one.

The cost of windowing is in increased communication. The com-
munication from the receiver to the sender is increased by a factor
of (2ℓ − 1)(⌊log2(Nx)/ℓ⌋ + 1), and the communication back from
the sender to the receiver does not change.

It is easy to incorporate batching and hashing methods with win-
dowing. The only difference is that batching and hashing effectively
reduce the sender’s set size by nearly a factor of n. More precisely,
the depth of the circuit becomes ⌈log2(⌊log2(B)/ℓ⌋+1)⌉+1, where B
is as in Figure 2. Without windowing, batching and hashing encode
the entire set Y into one hash table of sizem & NY , producingm/n

Session F1: Private Set Intersection CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1248

Table sizem
Insert size d

3 · 28 3 · 212 3 · 216 3 · 220 3 · 224 3 · 228
λ = 30 40 30 40 30 40 30 40 30 40 30 40

8192 8 9 17 20 68 74 536 556 6727 6798 100611 100890
16384 7 8 13 16 46 51 304 318 3492 3543 50807 51002

Table 1: Simple hashing bin size upper bound B for failure probability 2−λ , with λ ∈ {30, 40}, and h = 3; see equation (1).

ciphertexts to be communicated to the sender. With windowing
this is expanded to (2ℓ − 1)(⌊log2(B)/ℓ⌋ + 1) ·m/n ciphertexts.

Finally, we note that security of windowing technique is guaran-
teed by the IND-CPA security of the underlying fully homomorphic
encryption scheme.

4.3.2 Partitioning. Another way to reduce circuit depth is to
let the sender partition its set into α subsets, and perform one
PSI protocol execution per each subset. In the basic protocol, this
reduces sender’s circuit depth from ⌈log2(Nx + 1)⌉ to ⌈log2(Nx/α +
1)⌉, at the cost of increasing the return communication from sender
to receiver by a factor of α .

Partitioning can be naturally combined with windowing in a
way that offers an additional benefit of reducing the number of
homomorphic operations. Recall from Section 4.3.1 that the sender
needs to compute encryptions of all powers y, . . . ,yNx for each of
the receiver’s items y. With partitioning, the sender only needs to
compute encryptions of y, . . . ,yNx/α , which it can reuse for each
of the α partitions. Thus, with both partitioning and windowing,
the sender’s computational cost in the first step described in Sec-
tion 4.3.1 reduces by a factor of α , whereas the cost in the second
step remains the same.

We may combine batching and hashing with partitioning in
the following way. The sender performs its part of the hashing
routine (Figure 2) as usual, but splits the contents of its bins (each of
size B) into α parts of equal size, resulting in α tables each with bin
size≈ B/α . It then performs the PSI protocol with the improvements
described in Section 4.1, 4.2, and 4.3.1 using each of theα hash tables.
Now sender’s circuit depth reduces to ⌈log2(⌊log2(B/α)/ℓ⌋+1)⌉+1,
where B is as in Figure 2. The communication from the sender to
the receiver is α ciphertexts.

We would like to note that in order to preserve the sender’s
security, it is essential that after using simple hashing to insert its
items into the hash table, the sender partitions the contents of the
bins—including empty locations with value (⊥,⊥)—in a uniformly
random way. Since in the hashing routine (Figure 2) the sender
inserts its items in random locations within each bin, the correct
partitioning can be achieved by evenly splitting the contents of each
bin into α subsets using any deterministic partitioning method.

4.4 Reducing Reply Size via Modulus Switching

Finally, we employ modulus switching (see [12]), which effectively
reduces the size of the response ciphertexts. Modulus switching is a
well-known operation in lattice-based fully homomorphic encryp-
tion schemes. It is a public operation, which transforms a ciphertext
with encryption parameter q into a ciphertext encrypting the same
plaintext, but with a smaller parameter q′ < q. As long as q′ is
not too small, correctness of the encryption scheme is preserved.

Since FHE ciphertexts have size linear in logq, modulus switching
reduces ciphertext sizes by a factor of logq/logq′. This trick allows
the sender to “compress” the return ciphertexts before sending
them to the receiver. In practice, we are able to reduce the return
ciphertexts to about 15–20% of their original size. We note that the
security of the protocol is trivially preserved as long as the smaller
modulus q′ is determined at setup.

5 FULL PROTOCOL AND SECURITY PROOF

5.1 Formal Description

We detail the full protocol in Figure 4, given a secure fully homomor-
phic encryption scheme with circuit privacy. The ideal functionality
of this protocol is given in Figure 3.

Parameters: Two parties denoted as the sender and receiver with sets
of items of bit-length σ . Receiver’s set is of size Ny; sender’s set is of
size Nx. sid denotes the session ID of the protocol instance.
Functionality: On input (Receive, sid, Y) from the receiver and
(Send, sid, X) from the sender, where X , Y ⊆ {0, 1}σ , |X | = Nx,
|Y | = Ny. The functionality sends (Output, sid, X ∩Y) to the receiver,
and nothing to the sender.

Figure 3: Ideal functionality FPSI for private set

intersection with one-sided output.

We prove security in the standard semi-honest simulation-based
paradigm. Loosely put, we say that the protocol ΠPSI of Figure 4
securely realizes the functionality Fpsi, if it is correct, and there exist
two simulators (PPT algorithms) Simr, Sims with the following
properties. The simulator Simr takes the receiver’s set and the
intersection as input, and needs to generate a transcript for the
protocol execution that is indistinguishable from the receiver’s view
of the real interaction. Sims is similarly defined, with the exception
of not taking the intersection as input. For a formal definition of
simulation based security in the semi-honest setting, we refer the
reader to [40].

Theorem 5.1. The protocol in Figure 4 is a secure protocol for Fpsi

in the semi-honest setting.

Proof. It is easy to see that the protocol correctly computes the
intersection conditioned on the hashing routine succeeding, which
happens with overwhelming probability 1 − 2−λ .

We start with a corrupt receiver, and show the existence of Simr.
For easy of exposition, we will assume that the simulator/protocol
is parameterized by (h,m,B,n,q, t ,α , ℓ,H ′, {Hi }1≤i≤h), which are
fixed and public, and that hashing to a smaller representation (Sec-
tion 4.2.5) is used. We will then define the receiver’s simulator Simr

Session F1: Private Set Intersection CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1249

as follows. Simr computes the set Y ′ = H ′(Y), and uses a modified
hashing routine to cuckoo-hash its elements into a table of sizem.
The modification is that if an element y is in X ∩ Y , then a 0 is in-
serted, and otherwise a random non-zero element in Zt is inserted.
After hashing finishes, Simr inserts random non-zero elements
from Zt into the remaining empty slots. Next, Simr creates α − 1
more tables of the same size, and fills them with random non-zero
elements from Zt . It then randomly permutes the values inserted
in the matching bins among all α tables. Finally, it batches each
table intom/n FHE plaintext polynomials, and homomorphically
encrypts them intom/n ciphertexts. The resultingm/n · α cipher-
texts will serve as a simulation of the receiver’s view. Due to the
circuit privacy assumption on underlying fully homomorphic en-
cryption scheme, this view is indistinguishable from the receiver’s
view in the real execution of the protocol.

The case of a corrupt sender is straightforward. The simulator
Sims can generate new encryptions of zero in place of the encryp-
tions in Step 5. By the IND-CPA security of the fully homomorphic
encryption scheme, this result is indistinguishable from the sender’s
view in the real protocol.

�

5.2 Discussion

5.2.1 Function privacy. While our protocol (Figure 4) assumes
a fully homomorphic encryption scheme with circuit privacy, in
practice it is much more efficient to instantiate it with leveled fully
homomorphic encryption (recall Section 2.3), i.e. choose encryption
parameters large enough to avoid the costly bootstrapping opera-
tion. This does not change the security properties of the protocol,
as the encryption parameters are selected purely based on public
parameters Nx, Ny and σ .

While circuit privacy can be achieved in fully homomorphic
encryption using e.g. the techniques of [19], in practice the slightly
weaker notion of (statistical) function privacy [27] suffices, and
is easier to achieve in the leveled setting using re-randomization

and noise flooding, where the sender re-randomizes the output
ciphertexts by homomorphically adding to them an encryption of
zero with a very large noise [19, 25]. A standard “smudging lemma”
(see e.g. [5]) implies that in order to achieve 2−λ statistical distance
between output ciphertexts of different executions, it suffices to
add encryptions of zero with noise λ + log2 n + log2 α bits larger
than an upper bound on the noise in the original outputs of the
computation. We used the heuristic results in [14] to bound the
amount of noise in the output ciphertexts before flooding.

5.2.2 Malicious behavior. When considering malicious behavior
our protocol faces several challenges. Most notable is the sender’s
ability to compute an arbitrary function on the receiver’s homo-
morphically encrypted dataset. While the sender can not learn
additional information directly from the ciphertexts, it is able to
maliciously influence the correctness of the output, e.g. force the
intersection/output to be the receiver’s full set, or more gener-
ally f (X) ⊆ X . Efficiently preventing such behavior by the sender
appears to be extremely challenging.

For the case of a malicious receiver we need only to consider
potential leakage which the receiver can induce (sender has no

output). First, the receiver may provide a set of size greater than Nx
due to its ability to fill vacant slots in the cuckoo hash table. Addi-
tionally, the argument that function privacy can easily be achieved
through noise flooding no longer holds due to the receiver being
possibly providing ciphertexts with more noise than expected. As
such, the noise level of the response ciphertexts may depend on the
sender’s set, and thereby leak additional information. However, in
general we believe that this protocol provides reasonable protec-
tion against a malicious receiver for most practical applications. We
leave a more formal analysis of the malicious setting and potential
countermeasures to future work.

5.2.3 When receiver holds the larger set. So far we have made
the assumption that the receiver’s set size is much smaller than
the sender’s set size. Here we remark that our protocol can be
slightly modified to handle the opposite case, where the receiver
holds the larger set. The idea is that the two parties can perform
our protocol with their roles switched until the last step. At this
point, the receiver (who has now been playing the sender’s role)
holds an encryption of a vector v . It samples a random plaintext
vector r , and sends back to the sender an encryption of v + r . The
sender decrypts this value, and sends back the plaintext vectorv +r
to the receiver, who can compute the final result v . This protocol
is still secure in the semi-honest setting, and the communication
remains linear in the smaller set and logarithmic in the larger set.

6 IMPLEMENTATION AND PERFORMANCE

6.1 Performance Results

We implemented our PSI protocol described in Figure 4. For fully
homomorphic encryption we used SEAL v2.1 [38], which imple-
ments the Fan-Vercauteren scheme [21] in C++. The parameters for
SEAL that we used are given in Table 2, along with their compu-
tational security levels κ, estimated based on the best currently
known attacks [1, 2]. The column labeled “DBC” refers to the
decomposition_bit_count parameter in SEAL.We note that these
parameters are highly optimized for the particular computations
that we perform.

We give detailed computational performance results for our pro-
tocol in Table 3 for both single and multi-threaded execution with
4, 16, and 64 threads. As the receiver’s computation is typically
relatively small compared to the sender’s, we restrict to single-
threaded execution on the receiver’s side. Still, it is worth pointing
out that also the receiver’s computation would benefit hugely from
multi-threading, when available. Communication costs for our ex-
periments are given in Table 4. We chose a statistical security level
λ = 40, and a string length σ = 32 bits.

The benchmark machine has two 18-core Intel Xeon CPU E5-
2699 v3 @ 2.3GHz and 256GB of RAM. We perform all tests using
this single machine, and simulate network latency and bandwidth
using the Linux tc command. Specifically, we consider a LAN set-
ting, where the two parties are connected via local host with 10Gbps
throughput, and a 0.2ms round-trip time (RTT). We also consider
three WAN settings with 100Mbps, 10Mbps, and 1Mbps bandwidth,
each with an 80ms RTT. All times are reported as the average of 10
trials.

Session F1: Private Set Intersection CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1250

Input: Receiver inputs set Y ⊂ {0, 1}σ of size Ny; sender inputs set X ⊂ {0, 1}σ of size Nx. Nx, Ny, σ are public. κ and λ denote the computational
and statistical security parameters, respectively.
Output: The receiver outputs Y ∩ X ; the sender outputs ⊥.

(1) [Perform hashing] Hashing parameters h,m, B are agreed upon such that simple hashing hNx balls intom bins with max load B , and
cuckoo hashing Ny balls intom bins succeed with probability ≥ 1 − 2−λ .
(a) [Hashing to shorter strings] Let σ ′ = 2 log2(Nx +Ny)+λ−1. If σ > σ ′, then both parties hash their sets to a smaller representation.

First, a random hash function H ′ : {0, 1}σ → {0, 1}σ ′ is sampled. Let X ′ = {H ′(x) | x ∈ X } and Y ′ = {H ′(y) | y ∈ Y }. Perform the
rest of the protocol with (X ′, Y ′, σ ′) replacing (X , Y , σ), and output the corresponding items in X , Y as the intersection.

(b) [Hashing to bins] The parties perform Figure 2 with parameters h,m, B , and randomly sampled hash functions H1, ..., Hh :
{0, 1}σ−log2m → {0, 1}log2m as input. The sender performs Step 1 of Figure 2 with set X to obtain Bx, and the receiver performs
Step 2 with Y to obtain By.

(2) [Choose FHE parameters] The parties agree on parameters (n, q, t) for an IND-CPA secure FHE scheme with circuit privacy. They choose
t to be large enough so that log2 t > σ − log2m + ⌈log2 h ⌉ + 1.

(3) [Choose circuit depth parameters] The parties agree on the windowing parameter ℓ ∈ [1, log2 B] and partitioning parameter α ∈ [1, B]
as to minimize the overall cost.

(4) [Pre-process X]

(a) [Partitioning] The sender partitions its table By vertically (i.e. by columns) into α subtables By,1, By,2, . . . , By,α , each having
B′ := B/α columns.

(b) [Computing coefficients] For each row v of each subtable, the sender replaces the row v with coefficients of the polynomial∏
s (x − vs), i.e. it replaces v by Sym(v) = ((−1)j

∑
S⊂[B′], |S |=j

∏
s∈S vs)0≤j≤B′ .

(c) [Batching] For each subtable obtained from the previous step, the sender interprets each of its column as a vector of lengthm with
elements in Zt . Then the sender batches each vector intom/n plaintext polynomials. As a result, the r -th subtable is transformed into
m/n · B′ polynomials S (r)i, j , 1 ≤ i ≤ m/n, 0 ≤ j ≤ B′.

(5) [Encrypt Y]
(a) [Batching] The receiver interpretsBy as a vector of lengthm with elements in Zt . It batches this vector intom/n plaintext polynomials

Y 1, ..., Ym/n .
(b) [Windowing] For each batched plaintext polynomial Y computed during Step 5a, the receiver computes the component-wise i · 2j -th

powers Y i ·2j , for 1 ≤ i ≤ 2ℓ − 1 and 0 ≤ j ≤ ⌊log2(B′)/ℓ⌋.
(c) [Encrypt] The receiver uses FHE.Encrypt to encrypt each such power, obtainingm/n collections of ciphertexts {ci, j }. The receiver

sends these ciphertexts to the sender.
(6) [Intersect]

(a) [Homomorphically compute encryptions of all powers] For each collection of ciphertexts {ci, j }, the sender homomorphically
computes a vector c = (c0, . . . , cB′), such that ck is a homomorphic ciphertext encrypting Y k . In the end, the sender obtainsm/n
vectors c1, . . . , cm/n .

(b) [Homomorphically evaluate the dot product] The sender homomorphically evaluates

ri,r =
B′∑
j=0

ci [B′ − j] · S
(r)
i, j , for all 1 ≤ i ≤ m/n, and 1 ≤ r ≤ α ,

optionally performs modulus switching on the ciphertexts ri,r to reduce their sizes, and sends them back to the receiver.
(7) [Decrypt and get result] For each 1 ≤ r ≤ α , the receiver decrypts all ciphertexts it receives and concatenates the resultingm/n vectors

into one vector Rr of lengthm. Finally, the receiver outputs

Y ∩ X =
⋃

1≤r≤α
{y ∈ Y : Rr [Loc(y)] = 0} .

Figure 4: Full protocol.

Name n q t DBC κ

SEAL16384-1 16384 2226 − 226 + 1 8519681 76 ≫ 128 bits
SEAL16384-2 16384 2226 − 226 + 1 8519681 46 ≫ 128 bits
SEAL16384-3 16384 2189 − 221 + 9 · 215 + 1 8519681 48 ≫ 128 bits
SEAL8192-1 8192 2226 − 226 + 1 8519681 46 ≈ 120 bits
SEAL8192-2 8192 2189 − 221 + 9 · 215 + 1 8519681 48 > 128 bits

Table 2: Encryption parameter sets for SEAL v2.1. Security estimates are based on [1, 2].

6.1.1 Pre-processing. The “Sender pre-processing” column in
Table 3 measures the computational cost for the sender to prepare
its coefficients of the polynomial r

∏
x ∈X (y − x), as mentioned

in Section 4.3.1. More precisely, the sender’s pre-processing work
includes hashing and batching of its data, computing the coefficients
in the right-hand side of (3), and sampling the random vectors. We

Session F1: Private Set Intersection CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1251

Parameters Optim. Running time (seconds)

Nx Ny FHE parameters α ℓ
Sender pre-processing Sender online Receiver

T = 1 4 16 64 1 4 16 64 Enc. Dec.

224
11041 SEAL16384-2 256 1 72.2 18.0 6.2 3.0 42.2 14.4 7.1 5.6 0.3 10.3

128 2 70.9 19.1 6.3 3.1 38.9 15.6 9.8 9.1 0.5 5.1
SEAL16384-1 64 3 76.8 20.6 6.7 3.3 41.1 21.6 16.2 16.9 0.9 2.6

5535 SEAL8192-1
256 1 64.1 17.9 5.5 2.7 36.0 11.8 6.3 5.5 0.2 4.9
128 2 71.2 18.5 6.3 2.9 36.1 14.2 9.6 9.2 0.3 2.4
64 3 80.4 21.5 6.7 3.2 41.9 21.5 17.7 17.7 0.5 1.2

220
11041 SEAL16384-1

128 1 9.1 2.5 1.0 0.5 8.0 2.6 1.2 1.1 0.2 5.1
64 2 6.9 2.0 0.8 0.4 5.2 1.8 1.1 1.0 0.3 2.7
32 3 6.4 1.7 0.9 0.6 4.5 2.1 1.3 1.5 0.7 1.3

5535 SEAL8192-2
128 1 5.1 1.4 0.6 0.4 4.2 1.5 0.8 0.7 0.1 1.9
64 2 4.4 1.2 0.6 0.3 3.4 1.7 0.7 1.0 0.2 1.0
32 3 4.3 1.2 0.5 — 3.6 1.4 1.5 — 0.3 0.5

216
11041 SEAL16384-3

16 1 1.2 0.3 0.2 — 1.3 0.6 0.6 — 0.2 0.5
8 2 1.0 0.3 0.2 — 1.5 1.2 1.3 — 0.3 0.3
4 3 0.9 0.3 — — 1.9 1.7 — — 0.5 0.1

5535 SEAL8192-2
32 1 0.9 0.3 0.2 — 0.9 0.4 0.3 — 0.1 0.5
16 2 0.7 0.2 0.1 — 0.7 0.3 0.3 — 0.1 0.2
8 3 0.6 0.2 — — 0.7 0.5 — — 0.3 0.1

Table 3: Running time in seconds for our protocol with T ∈ {1, 4, 16, 64} threads; λ = 40, σ = 32, h = 3. Since we implemented

multi-threading by dividing the α partitions evenly between threads, having T > α offers no performance benefit. These

cases are denoted by “—” in the table.

Parameters Optim. Comm. size (MB) Comm. time (seconds)

Nx Ny FHE parameters α ℓ R→ S S→ R 10 Gbps 100 Mbps 10 Mbps 1 Mbps

224
11041 SEAL16384-2 256 1 3.6 33.8 0.0 4.0 30.2 300.4

128 2 6.3 16.9 0.0 2.4 19.0 186.7
SEAL16384-1 64 3 12.7 8.4 0.0 2.2 17.4 169.4

5535 SEAL8192-1
256 1 3.2 16.9 0.0 2.0 16.3 161.5
128 2 4.1 8.4 0.0 1.3 10.3 101.0
64 3 6.8 4.2 0.0 1.1 9.1 88.1

220
11041 SEAL16384-1

128 1 1.8 16.9 0.0 1.8 15.3 149.9
64 2 3.6 8.4 0.0 1.3 9.9 98.0
32 3 7.2 4.2 0.0 1.2 9.4 92.6

5535 SEAL8192-2
128 1 1.1 8.4 0.0 1.0 7.8 77.0
64 2 1.9 4.2 0.0 0.6 5.1 49.3
32 3 3.4 2.2 0.0 0.6 4.7 45.0

216
11041 SEAL16384-3

16 1 2.3 2.1 0.0 0.5 3.6 35.5
8 2 3.0 1.1 0.0 0.4 3.4 33.0
4 3 6.0 0.5 0.0 0.6 5.4 52.9

5535 SEAL8192-2
32 1 0.8 2.1 0.0 0.3 2.4 22.9
16 2 1.5 1.1 0.0 0.3 2.2 20.7
8 3 3.0 0.5 0.0 0.4 3.0 28.6

Table 4: Communication cost in MB for our protocol; λ = 40, σ = 32, h = 3. 10Gbps network assumes 0.2ms RTT, and the others

use 80ms RTT. R→ S and S→ R denote the communications from receiver to sender, and from sender to receiver.

also have the sender perform number theoretic transforms (NTT) to
its plaintext polynomials to facilitate the underlying homomorphic
multiplications in the second step described in Section 4.3.1.

We remark that our pre-processing can be done entirely offline
without involving the receiver. Specifically, given an upper bound
on the receiver’s set size, the sender can locally choose parameters
and perform the pre-processing. Upon learning the receiver’s actual
set size, the parameters selected by the sender are communicated
to the receiver. We note that in order to achieve simulation-based

security, the selected hash functions can only be used once. As
such, each instance of the protocol must have an independent pre-
processing phase, and in the event that a single pre-processing
phase is used between several instances, an adversary with control
of a party’s set could force a hashing failure to occur. However, if
such adversaries are not considered, then the pre-processing phase
can be reused, resulting in significantly better performance.

Session F1: Private Set Intersection CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1252

6.1.2 PSI with longer items. When implementing our PSI proto-
col, we restrict the item length to be 32 bits. The reason is, although
we can accommodate arbitrary size items in principle as described
in Section 4.2.5, doing so naively with our protocol would require
the encryption parameters to be substantially increased, which
has a large negative impact on performance. We leave the task
of making our protocol efficient for arbitrary size items to future
work.

6.2 Comparison to Pinkas et al. [50]
Our primary point of comparison is the Pinkas et al. PSI proto-
col [50], in which the authors consider both the case of symmetric
set sizes, and the setting where the receiver’s set is significantly
smaller than the sender’s. While our protocol can easily handle sym-
metric set sizes, our main advantage over [50] is in the asymmetric
setting, which we now focus on. To make comparing the two proto-
cols easier, we ran them on the same machine, and summarized the
total running times side by side in Table 5. We chose to evaluate per-
formance for the set sizes Ny ∈ {5535, 11041},Nx ∈ {216, 220, 224}
to maximize the utilization of ciphertext batching, described in
Section 4.1. The sizes for Ny were determined in Section 4.2.3 to be
the largest that can guarantee a statistical security level of λ ≥ 40. If
a direct comparison to the running times reported in [50] is desired,
the reader can feel free to round down our set sizes Ny to match
the sizes therein.

When comparing the two protocols, we find that our commu-
nication cost scales much better when the sender’s set size is
greater than 216. For instance, when considering strings of 32 bits,
with Ny ≤ 5535 and Nx = 220, our protocol sends 5.6MB, while
the same Nx,Ny parameters applied to [50] result in 30.4MB of
communication—a 5.4× improvement. Increasing Nx even further
to Nx = 224, our protocol requires just 11.0MB of communication,
whereas [50] requires over 480MB—a 43.7× improvement. More-
over, continuing to increase the sender’s set size results in an even
greater communication benefit.

When computing the intersection of sets of size Ny ≤ 5535 and
Nx = 220 in a single-threaded LAN setting, our protocol requires
8.6 seconds. Evaluating the protocol of [50] using the same pa-
rameters results in an execution time of 3.1 seconds. While [50] is
faster than our protocol in this particular setting, it also requires
5.4× more communication, and distributes the computational cost
equally between the parties. That is, each party performsO(Nx+Ny)
operations. In contrast, our protocol places very few requirements
on the computational power of the receiver.

Since our protocol achieves a lower communication than [50]
in the asymmetric set sizes setting, we obtain much better perfor-
mance as we decrease the network bandwidth. To clearly demon-
strate this, we consider several other network environments that
model the WAN setting. In particular, we restrict the parties to a
100Mbps, 10Mbps, and 1Mbps networks with a 80ms round trip
time. In these settings, our protocol outperforms [50] with few
exceptions. Namely, the single-threaded 100Mbps setting, with
Nx = 224,Ny ≤ 5535, our protocol requires 107.2 seconds, whereas
[50] requires 87.9 seconds. However, our protocol receives a much
greater speedup in the multi-threaded setting, reducing our running
time to 36.7 seconds when the sender uses 4 threads. On the other

hand, [50] requires 65.5 seconds for the same set sizes and with
both parties using 4 threads—a nearly 1.8× slowdown compared to
our protocol. As we further decrease the bandwidth, the difference
becomes much more significant. In the 1Mbps single-threaded set-
ting, with Nx = 224,Ny ≤ 5535, our protocol requires 211.1 seconds
compared to [50] requiring 4080.6 seconds—a 19.3× improvement
in running time. When utilizing 4 threads, our running time de-
creases to 132.7 seconds, while [50] requires 4064.3 seconds—a
30.6× improvement.

We also consider the running time of our protocol when more
than 4 threads are used by the sender. When allowing 16 threads
in the LAN setting, our running time decreases to 16.9 seconds
for Nx = 224,Ny ≤ 5535. [50] on the other hand experiences
less speedup over 4 threads, requiring just over 20 seconds for
Nx = 224 when performed with 16 threads. This demonstrates that
our protocol can outperform [50] even in the LAN setting, when at
least 16 threads are used by the sender.

An important property of our protocol is the relatively small
amount of work required by the receiver. In many applications the
computations power of the receiver is significantly less than the
sender. This is most notable in the contact discovery application
where the receiver is likely a cellphone while the sender can be run
at a large datacenter where computational power is inexpensive.
For instance, Table 3 with parameters SEAL8192-1, α = 64, ℓ =
3 shows that for a intersection between 5535 and 224 items, the
receiver need only perform 1.7 seconds of computation while the
server with 16 threads required 18 seconds with a total of 11MB
of communication, less than half the size of the average 2012 iOS
application download size [52] and a tenth of the average 2015 daily
US smartphone mobile data usage [20]. In contrast, [50] requires
480MB of communication—a 44× increase–and the computational
load of the receiver is significantly higher requiring 50 million hash
table queries and several thousand oblivious transfers.

6.3 Comparison to Kolesnikov et al. [37]
We also compare our protocol to that of Kolesnikov et al. [37],
which optimizes the use of oblivious transfer. While their results
do improve the running time for symmetric sets of large items, we
found that when applied to our setting their improvement provides
little benefit, and is outweighed by other optimizations employed
by [50]. In particular, [50] considers a different oblivious transfer
optimization which is more efficient on short strings, and also
optimizes cuckoo hashing for the setting of asymmetric set sizes.

These design decisions result in [37] requiring 2×more communi-
cation than [50], and 87×more than our protocol, when intersecting
5535 and 224 size sets with parameters SEAL8192-1, α = 64, ℓ = 3.
When benchmarking [37], we found that the communication is
actually ∼ 1.5 larger than their theoretical limit. The theoretical
communication complexity of [37] is

Nxsv + k(1.2Ny + s) ,

where s = 6 is the stash size in cuckoo hashing, k ≈ 444 is the
width of the pseudorandom code, v = λ + log2(NxNy) is the size of
the OPRF output, and 1.2 is related to cuckoo hashing utilization.
The communication complexity of [50] also follows same equation,

Session F1: Private Set Intersection CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1253

Parameters Protocol Comm. Total time (seconds)

Nx Ny Size (MB) 10 Gbps 100 Mbps 10 Mbps 1 Mbps
T = 1 4 1 4 1 4 1 4

224
11041

Us 23.2, †21.1 115.4 40.3 117.8 42.7 134.4 59.3 †290.8 †215.1
[50] 480.9 40.5 23.3 88.0 66.4 449.5 427.5 4084.8 4067.2
[37] 975.0 70.8 — 188.7 — 1269.1 — 12156.7 —

5535
Us 20.1, †12.5, ‡11.0 105.2 34.8 107.2 36.7 †120.3 †45.8 †211.1 ‡132.7
[50] 480.4 40.1 23.1 87.9 65.5 449.2 427.3 4080.6 4064.3
[37] 962.1 70.4 — 188.3 — 1263.5 — 12153.2 —

220
11041

Us 11.5 12.8 5.7 14.0 6.9 22.2 15.1 105.4 98.3
[50] 30.9 3.3 2.1 7.0 5.6 29.8 28.3 263.7 262.1
[37] 58.5 4.5 — 11.6 — 79.4 — 688.1 —

5535
Us 5.6 8.6 3.3 9.2 3.9 13.3 8.0 53.6 48.3
[50] 30.4 3.1 2.0 6.8 5.0 29.0 27.9 260.0 259.6
[37] 57.3 4.4 — 11.5 — 79.3 — 686.0 —

216
11041

Us 4.1, †4.4 3.0 †1.7 3.4 †2.1 6.4 †5.3 36.0 35.0
[50] 2.6 0.7 0.6 1.5 1.4 3.3 3.1 21.6 22.1
[37] 4.5 0.4 — 1.4 — 5.6 — 48.2 —

5535
Us 2.6 1.8 0.9 2.0 1.2 3.9 3.1 22.5 21.7
[50] 2.1 0.7 0.6 1.4 1.3 2.9 2.8 19.8 21.3
[37] 3.7 0.4 — 1.2 — 5.4 — 46.7 —

Table 5: Total communication cost in MB and running time in seconds comparing our protocol to [50] and to [37], with

T ∈ {1, 4} threads; λ = 40, σ = 32, h = 3. 10Gbps network assumes 0.2ms RTT, and others use 80ms RTT. Only single-threaded

results are shown for [37] due to limitations of their implementation. The communication cost for [37] is based on the

equation provided in their paper; empirical communication was observed to be ∼ 1.5 times larger.

but with a smaller k due to more optimized oblivious transfer sub-
protocol. Our protocol on the other hand requires

1.5CσNy log2 Nx

bits of communication, where C is a small constant for cipher-
text expansion, σ = 32 is the string length, and 1.5 is related to
the cuckoo hashing utilization with no stash. For example, when
Nx = 224 and Ny = 5535, our protocol requires only 12.5MB of
communication, whereas the empirical communication of [37] in
this setting is almost 115× larger.

This increase in communication translates into increased run-
ning times compared to [50] and our protocol in the WAN settings.
For instance, when intersecting 5535 and 224 items on a 10Mbps
connection, our protocol is more than 57× faster, while [50] is only
3× faster. The total running times are summarized in Table 5 to
make comparison to our protocol and to [50] easy. Since the im-
plementation of [37] does not support multi-threading, we only
present results for T = 1.

7 CONCLUSIONS

Although there has been huge progress in fully homomorphic en-
cryption schemes since the groundbreaking work of Craig Gentry
in 2009, it is still believed by many to be too expensive for practical
use-cases. However, in this paper we have constructed a practical
private set intersection protocol using the Fan-Vercauteren scheme,
adopting and combining optimizations from both fully homomor-
phic encryption and cutting-edge work on PSI. We think our pro-
tocol is particularly interesting for the private contact discovery
use-case, where it achieves a very low communication overhead:
about 12MB to intersect a set of 5 thousand items with a set of
16 million items, which is significantly lower than in the previous

state-of-the-art protocols. We regard our work as a first step to
explore the possibilities of applying fully homomorphic encryption
to private set intersection, and look forward to further discussions
and optimizations.

REFERENCES

[1] Martin R Albrecht. 2017. On dual lattice attacks against small-secret LWE and
parameter choices in HElib and SEAL. In Annual International Conference on the

Theory and Applications of Cryptographic Techniques. Springer, 103–129.
[2] Martin R. Albrecht, Rachel Player, and Sam Scott. 2015. On the concrete

hardness of Learning with Errors. J. Mathematical Cryptology 9, 3 (2015),
169–203. http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/
jmc-2015-0016.xml

[3] Yuriy Arbitman, Moni Naor, and Gil Segev. 2010. Backyard cuckoo hashing:
Constant worst-case operations with a succinct representation. In Foundations of

Computer Science (FOCS), 2010 51st Annual IEEE Symposium on. IEEE, 787–796.
[4] Frederik Armknecht, Colin Boyd, Christopher Carr, Kristian Gjøsteen, Angela

Jäschke, Christian A Reuter, and Martin Strand. 2015. A guide to fully homomor-

phic encryption. Technical Report. IACR Cryptology ePrint Archive (2015/1192).
[5] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-

tanathan, and Daniel Wichs. 2012. Multiparty computation with low communi-
cation, computation and interaction via threshold FHE. In Annual International

Conference on the Theory and Applications of Cryptographic Techniques. Springer,
483–501.

[6] Giuseppe Ateniese, Emiliano De Cristofaro, and Gene Tsudik. 2011. (If) Size Mat-
ters: Size-Hiding Private Set Intersection. In Public Key Cryptography - PKC 2011

- 14th International Conference on Practice and Theory in Public Key Cryptography,

Taormina, Italy, March 6-9, 2011. Proceedings (Lecture Notes in Computer Sci-

ence), Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi (Eds.),
Vol. 6571. Springer, 156–173. https://doi.org/10.1007/978-3-642-19379-8_10

[7] Josh Benaloh andMichael de Mare. 1994. One-Way Accumulators: A Decentralized

Alternative to Digital Signatures. Springer Berlin Heidelberg, Berlin, Heidelberg,
274–285. https://doi.org/10.1007/3-540-48285-7_24

[8] Joppe W Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. 2013. Improved
security for a ring-based fully homomorphic encryption scheme. In Cryptography
and Coding. Springer, 45–64.

[9] Tatiana Bradley, Sky Faber, and Gene Tsudik. 2016. Bounded size-hiding private
set intersection. In International Conference on Security and Cryptography for

Networks. Springer, 449–467.

Session F1: Private Set Intersection CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1254

http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
https://doi.org/10.1007/978-3-642-19379-8_10
https://doi.org/10.1007/3-540-48285-7_24

[10] Tatiana Bradley, Sky Faber, and Gene Tsudik. 2016. Bounded Size-Hiding Private
Set Intersection. In Security and Cryptography for Networks - 10th International

Conference, SCN 2016, Amalfi, Italy, August 31 - September 2, 2016, Proceedings

(Lecture Notes in Computer Science), Vassilis Zikas and Roberto De Prisco (Eds.),
Vol. 9841. Springer, 449–467. https://doi.org/10.1007/978-3-319-44618-9_24

[11] Zvika Brakerski, Craig Gentry, and Shai Halevi. 2013. Packed ciphertexts in
LWE-based homomorphic encryption. In Public-Key Cryptography–PKC 2013.
Springer, 1–13.

[12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2012. (Leveled)
fully homomorphic encryption without bootstrapping. In Proceedings of the 3rd

Innovations in Theoretical Computer Science Conference. ACM, 309–325.
[13] Zvika Brakerski and Vinod Vaikuntanathan. 2014. Efficient fully homomorphic

encryption from (standard) LWE. SIAM J. Comput. 43, 2 (2014), 831–871.
[14] Ana Costache and Nigel P Smart. 2016. Which Ring Based Somewhat Homomor-

phic Encryption Scheme is Best?. In Cryptographers’ Track at the RSA Conference.
Springer, 325–340.

[15] Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Moti Yung. 2009. Ef-
ficient Robust Private Set Intersection. In Proceedings of the 7th International

Conference on Applied Cryptography and Network Security (ACNS ’09). Springer-
Verlag, Berlin, Heidelberg, 125–142. https://doi.org/10.1007/978-3-642-01957-9_8

[16] Luc Devroye and Pat Morin. 2003. Cuckoo hashing: further analysis. Inform.

Process. Lett. 86, 4 (2003), 215–219.
[17] Martin Dietzfelbinger, Andreas Goerdt, Michael Mitzenmacher, Andrea Mon-

tanari, Rasmus Pagh, and Michael Rink. 2010. Tight thresholds for cuckoo
hashing via XORSAT. In International Colloquium on Automata, Languages, and

Programming. Springer, 213–225.
[18] Changyu Dong, Liqun Chen, and Zikai Wen. 2013. When private set intersection

meets big data: an efficient and scalable protocol. In Proceedings of the 2013 ACM

SIGSAC conference on Computer & communications security. ACM, 789–800.
[19] Léo Ducas and Damien Stehlé. 2016. Sanitization of FHE ciphertexts. In An-

nual International Conference on the Theory and Applications of Cryptographic

Techniques. Springer, 294–310.
[20] Ericsson. 2016. EricssonMobility Report: ON THE PULSE OF THENETWORKED

SOCIETY. Stockholm, Sweden (2016).
[21] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully Ho-

momorphic Encryption. Cryptology ePrint Archive, Report 2012/144. (2012).
http://eprint.iacr.org/.

[22] Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul Spirakis. 2003. Space
efficient hash tables with worst case constant access time. In Annual Symposium

on Theoretical Aspects of Computer Science. Springer, 271–282.
[23] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. 2004. Efficient Private

Matching and Set Intersection. In Advances in Cryptology - EUROCRYPT 2004, In-

ternational Conference on the Theory and Applications of Cryptographic Techniques,

Interlaken, Switzerland, May 2-6, 2004, Proceedings (Lecture Notes in Computer

Science), Christian Cachin and Jan Camenisch (Eds.), Vol. 3027. Springer, 1–19.
https://doi.org/10.1007/978-3-540-24676-3_1

[24] Alan Frieze, Páll Melsted, and Michael Mitzenmacher. 2009. An analysis of
random-walk cuckoo hashing. In Approximation, Randomization, and Combina-

torial Optimization. Algorithms and Techniques. Springer, 490–503.
[25] Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices.. In STOC,

Vol. 9. 169–178.
[26] Craig Gentry, Shai Halevi, and Nigel P Smart. 2012. Homomorphic evaluation of

the AES circuit. In Advances in Cryptology–CRYPTO 2012. Springer, 850–867.
[27] Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. 2010. i-hop homomorphic

encryption and rerandomizable Yao circuits. In Annual Cryptology Conference.
Springer, 155–172.

[28] Craig Gentry, Amit Sahai, and Brent Waters. 2013. Homomorphic Encryp-
tion from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster,
Attribute-Based. In CRYPTO (1) (Lecture Notes in Computer Science), Ran Canetti
and Juan A. Garay (Eds.), Vol. 8042. Springer, 75–92. https://doi.org/10.1007/
978-3-642-40041-4

[29] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. 2016. CryptoNets: Applying Neural Networks to Encrypted
DatawithHigh Throughput andAccuracy. In Proceedings of The 33rd International
Conference on Machine Learning. 201–210.

[30] Carmit Hazay and Yehuda Lindell. 2008. Efficient protocols for set intersection
and pattern matching with security against malicious and covert adversaries. In
Theory of Cryptography Conference. Springer, 155–175.

[31] Carmit Hazay and Kobbi Nissim. 2010. Efficient set operations in the presence
of malicious adversaries. In International Workshop on Public Key Cryptography.
Springer, 312–331.

[32] Carmit Hazay and Kobbi Nissim. 2012. Efficient set operations in the presence
of malicious adversaries. Journal of cryptology 25, 3 (2012), 383–433.

[33] Yan Huang, David Evans, and Jonathan Katz. 2012. Private set intersection: Are
garbled circuits better than custom protocols?. In NDSS.

[34] Bernardo A. Huberman, Matt Franklin, and Tad Hogg. 1999. Enhancing Privacy
and Trust in Electronic Communities. In In Proc. of the 1st ACM Conference on

Electronic Commerce. ACM Press, 78–86.
[35] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. 2003. Extending oblivious

transfers efficiently. InAnnual International Cryptology Conference. Springer, 145–
161.

[36] Seny Kamara, Payman Mohassel, Mariana Raykova, and Seyed Saeed Sadeghian.
2014. Scaling Private Set Intersection to Billion-Element Sets. In Financial Cryp-

tography and Data Security - 18th International Conference, FC 2014, Christ Church,

Barbados, March 3-7, 2014, Revised Selected Papers (Lecture Notes in Computer

Science), Nicolas Christin and Reihaneh Safavi-Naini (Eds.), Vol. 8437. Springer,
195–215. https://doi.org/10.1007/978-3-662-45472-5_13

[37] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. 2016. Effi-
cient Batched Oblivious PRF with Applications to Private Set Intersection. Cryp-
tology ePrint Archive, Report 2016/799. (2016). http://eprint.iacr.org/2016/799.

[38] Kim Laine, Hao Chen, and Rachel Player. 2016. Simple Encrypted

Arithmetic Library - SEAL (v2.1). Technical Report. Microsoft Re-
search. https://www.microsoft.com/en-us/research/publication/
simple-encrypted-arithmetic-library-seal-v2-1/

[39] Mikkel Lambaek. 2016. Breaking and Fixing Private Set Intersection Protocols.
Cryptology ePrint Archive, Report 2016/665. (2016). http://eprint.iacr.org/2016/
665.

[40] Yehuda Lindell. 2016. How To Simulate It - A Tutorial on the Simulation Proof
Technique. Cryptology ePrint Archive, Report 2016/046. (2016). http://eprint.
iacr.org/2016/046.

[41] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. 2012. On-the-fly
multiparty computation on the cloud viamultikey fully homomorphic encryption.
In Proceedings of the forty-fourth annual ACM symposium on Theory of computing.
ACM, 1219–1234.

[42] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2010. On Ideal Lattices
and Learning with Errors over Rings. In Advances in Cryptology - EUROCRYPT

2010, 29th Annual International Conference on the Theory and Applications of

Cryptographic Techniques, French Riviera, May 30 - June 3, 2010. Proceedings

(Lecture Notes in Computer Science), Henri Gilbert (Ed.), Vol. 6110. Springer, 1–23.
https://doi.org/10.1007/978-3-642-13190-5_1

[43] Moxie Marlinspike. 2014. The Difficulty Of Private Contact Discovery. A
company sponsored blog post. (2014). https://whispersystems.org/blog/
contact-discovery/.

[44] C. Meadows. 1986. A More Efficient Cryptographic Matchmaking Protocol
for Use in the Absence of a Continuously Available Third Party. In 1986 IEEE

Symposium on Security and Privacy. 134–134. https://doi.org/10.1109/SP.1986.
10022

[45] Michael Naehrig, Kristin E. Lauter, and Vinod Vaikuntanathan. 2011. Can homo-
morphic encryption be practical?. In Proceedings of the 3rd ACM Cloud Computing

Security Workshop, CCSW 2011, Chicago, IL, USA, October 21, 2011, Christian
Cachin and Thomas Ristenpart (Eds.). ACM, 113–124. https://doi.org/10.1145/
2046660.2046682

[46] Michele Orrù, Emmanuela Orsini, and Peter Scholl. 2017. Actively Secure 1-out-
of-N OT Extension with Application to Private Set Intersection. In Cryptogra-

phers’ Track at the RSA Conference. Springer, 381–396.
[47] Rasmus Pagh and Flemming Friche Rodler. 2001. Cuckoo hashing. In European

Symposium on Algorithms. Springer, 121–133.
[48] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. 2015. Phas-

ing: Private set intersection using permutation-based hashing. In 24th USENIX

Security Symposium (USENIX Security 15). 515–530.
[49] Benny Pinkas, Thomas Schneider, and Michael Zohner. 2014. Faster Private Set

Intersection Based on OT Extension.. In Usenix Security, Vol. 14. 797–812.
[50] Benny Pinkas, Thomas Schneider, and Michael Zohner. 2016. Scalable Private

Set Intersection Based on OT Extension. Cryptology ePrint Archive, Report
2016/930. (2016). http://eprint.iacr.org/2016/930.

[51] Martin Raab and Angelika Steger. 1998. “Balls into Bins” – A Simple and Tight
Analysis. In International Workshop on Randomization and Approximation Tech-

niques in Computer Science. Springer, 159–170.
[52] ABI Research. 2012. Average Size of Mobile Games for iOS Increased by a

Whopping 42% between March and September. London, United Kingdom (2012).
[53] Peter Rindal and Mike Rosulek. 2016. Improved Private Set Intersection against

Malicious Adversaries. Cryptology ePrint Archive, Report 2016/746. (2016).
http://eprint.iacr.org/2016/746.

[54] Ronald L Rivest, Len Adleman, and Michael L Dertouzos. 1978. On data banks
and privacy homomorphisms. Foundations of secure computation 4, 11 (1978),
169–180.

[55] Nigel P Smart and Frederik Vercauteren. 2014. Fully homomorphic SIMD opera-
tions. Designs, codes and cryptography 71, 1 (2014), 57–81.

Session F1: Private Set Intersection CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1255

https://doi.org/10.1007/978-3-319-44618-9_24
https://doi.org/10.1007/978-3-642-01957-9_8
http://eprint.iacr.org/
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-642-40041-4
https://doi.org/10.1007/978-3-642-40041-4
https://doi.org/10.1007/978-3-662-45472-5_13
http://eprint.iacr.org/2016/799
https://www.microsoft.com/en-us/research/publication/simple-encrypted-arithmetic-library-seal-v2-1/
https://www.microsoft.com/en-us/research/publication/simple-encrypted-arithmetic-library-seal-v2-1/
http://eprint.iacr.org/2016/665
http://eprint.iacr.org/2016/665
http://eprint.iacr.org/2016/046
http://eprint.iacr.org/2016/046
https://doi.org/10.1007/978-3-642-13190-5_1
https://whispersystems.org/blog/contact-discovery/
https://whispersystems.org/blog/contact-discovery/
https://doi.org/10.1109/SP.1986.10022
https://doi.org/10.1109/SP.1986.10022
https://doi.org/10.1145/2046660.2046682
https://doi.org/10.1145/2046660.2046682
http://eprint.iacr.org/2016/930
http://eprint.iacr.org/2016/746

	Abstract
	1 Introduction
	1.1 Private Set Intersection
	1.2 Fully Homomorphic Encryption
	1.3 Related Work
	1.4 Contributions and Roadmap

	2 Preliminaries
	2.1 Notations
	2.2 Private Set Intersection
	2.3 Leveled Fully Homomorphic Encryption

	3 The Basic Protocol
	4 Optimizations
	4.1 Batching
	4.2 Hashing
	4.3 Reducing the Circuit Depth
	4.4 Reducing Reply Size via Modulus Switching

	5 Full Protocol and Security Proof
	5.1 Formal Description
	5.2 Discussion

	6 Implementation and Performance
	6.1 Performance Results
	6.2 Comparison to [Pinkas et al. 2016]
	6.3 Comparison to [Kolesnikov et al. 2016]

	7 Conclusions
	References

