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ABSTRACT
Recently, using secure processors for trusted computing in cloud

has attracted a lot of attention. Over the past few years, efficient

and secure data analytic tools (e.g., map-reduce framework, ma-

chine learning models, and SQL querying) that can be executed over

encrypted data using the trusted hardware have been developed.

However, these prior efforts do not provide a simple, secure and

high level language based framework that is suitable for enabling

generic data analytics for non-security experts who do not have

concepts such as “oblivious execution”. In this paper, we thus pro-

vide such a framework that allows data scientists to perform the

data analytic tasks with secure processors using a Python/Matlab-

like high level language. Our framework automatically compiles

programs written in our language to optimal execution code by

managing issues such as optimal data block sizes for I/O, vectorized

computations to simplify much of the data processing, and opti-

mal ordering of operations for certain tasks. Furthermore, many

language constructs such as if-statements are removed so that a

non-expert user is less likely to create a piece of code that may re-

veal sensitive information while allowing oblivious data processing

(i.e., hiding access patterns). Using these design choices, we provide

guarantees for efficient and secure data analytics. We show that

our framework can be used to run the existing big data benchmark

queries over encrypted data using the Intel SGX efficiently. Our

empirical results indicate that our proposed framework is orders of

magnitude faster than the general oblivious execution alternatives.
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1 INTRODUCTION
Cloud computing has become an important alternative for large

scale data processing due to its high scalability and low cost. One of

the main challenges in cloud computing is protecting the security

and privacy of the outsourced data. Recently, efficient solutions that

leverage secure processors emerged as an important alternative for

protecting the data stored in the cloud (e.g., [46, 50, 56]).

Secure processors allow users to execute programs securely in

a manner that operating systems cannot directly observe or tam-

per with program execution without being detected. Previously,

one had to purchase specialized hardware to build such systems.

Recently, Intel has included a special module in CPU, named Soft-
ware Guard eXtension (SGX), into its 6th generation Core i7, i5, and

Xeon processors [33] that can execute software securely, even when

an operating system or a virtual machine monitor (i.e., hypervi-

sor) is compromised. In short, SGX reduces the trusted computing
base(TCB) to a minimal set of trusted code (programmed by the

programmer) and the SGX processor, where TCB of a system is the

set of all components that are critical to its security.

Still, building a robust secure application with SGX is non-trivial

due to several shortcomings of the SGX architecture. In particular,

operating systems can still monitor memory access patterns by

the secure trusted code. It has been shown in [34, 44] that access

pattern leakage can reveal a significant amount of information

about encrypted data. Furthermore, SGX is a memory constrained

environment. Current version of SGX can only support up to 128MB
of memory for secure code execution, which includes on demand

memory allocation using malloc or new. In our experiments, we

observe that we can allocate at most about 90MB effectively for

storing data. Therefore, we still need efficient memory management

mechanisms to process large datasets.
1
Finally, the SGX architecture

does not have built-in support for secure multi-user interactive

computation.

In this paper, we present a generic data analytics framework

in a cloud computing environment using SGX. We consider two

setups: (1) Single user scenario, where a single end user has a large

amount of data and wants to perform data analytics tasks using

cloud computing infrastructure. However, the user does not trust

the cloud provider with data and wants to perform operations

1
It is worth to mention that, Intel also proposed a general dynamic memory allocation

mechanism for the next version of SGX in [42]. However, to efficiently analyze very

large datasets, we still need some form of memory allocation mechanisms.
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on the encrypted data. (2) Multi-user scenario, similar to secure

multi-party computation, where multiple users possess data that

they want to use together to perform complex data analytics tasks.

However, these users do not trust other participants with their

input data, but they trust a central SGX based system due to its

security guarantees and willing to share the output of the analytics

operations with everyone. For example, such a setup can be used

among law enforcement organizations to build threat detection

models without actually sharing information other than the final

result.

In our framework, we built a programming language that allows

data scientists to build data analytic programs with basic operations.

Our Python inspired language is designed to vectorize computa-

tions to enable simple and efficient representation of many practical

data analysis tasks. Furthermore, to enable such vectorized compu-

tation, we build an efficient matrix abstraction for handling large

data. To that end, we propose BigMatrix abstraction, which handles

encrypted matrix data storage transparently and allows data scien-

tists to access data in a block-by-block manner with integrity and

privacy protection. In addition, our programming language does

not allow certain constructs such as “if-statement” that may make

it hard to create efficient oblivious executions. For example, a data

scientist who wants to compute the average income of individuals

may typically write a for-loop with if statements to compute such

average (see the listing below).

sum = 0 , count = 0

f o r i = 0 to Person . l e ng t h :

i f Person . age >= 5 0 :

count ++

sum += P . income

p r i n t sum / count

With our framework, such a computation needs to be done using

Python NumPy [6] or pandas [7] like constructs with vectorization.

In the listing below, binary vector S that returns 1 for ith tuple

when the selection condition is satisfied (‘age’ > 50), which is used

for computing the average income using the element-wise product

operation. As we discuss later, such a vectorized computation auto-

matically hides important sensitive information such as data access

patterns.

S = where ( Person , " Person [ ' age ' ] >= 5 0 " )

p r i n t ( S . ∗ Person [ ' income ' ] ) / sum ( S )

By designing, efficient and oblivious matrix sorting, selection,

and join operations, combined with simple for-loops, we show that

all most all of the practical data analytics tasks can be programmed

and executed in our framework. Furthermore, during our experi-

mental evaluation, we observed that block sizes and the order of

certain operations (e.g., SQL like operations) has an impact on exe-

cution time. As such, we proposed an optimization mechanism with

the programming abstraction, that will find the optimum execution

policies for a given sequence of basic operations. In addition, to

utilize our proposed data analytics framework, we have provided

specific protocols to load code and data, provision and execute

program, and distribute the result. Furthermore, we emphasize on

building data oblivious system, where code execution does not de-

pend on data. Instead of using generic complex Oblivious RAM

(ORAM) algorithm (e.g., [53]) to hide data access patterns, we lever-

age our knowledge of the vectorized computation algorithms to

provide operation specific but very efficient oblivious algorithms. We

have made all of our individual operations to be data oblivious and

provided a theoretical proof that combination of such operations

remains oblivious. As a result, an adversary cannot learn extra

information based on data access alone.

Contributions. The main contributions of this paper can be sum-

marized as follows:

• We propose a generic framework for secure data analytics in

an untrusted cloud setupwith both single user andmulti-user

settings. Compared to existing work that leverages trusted

processors (e.g., relational database system [13, 15], map-

reduce [50], sql execution on spark [56], etc.), to our knowl-

edge, we are among the first to provide a high level python

inspired language that allows efficient, generic, and oblivious

execution of data analytics tasks.

• We present BigMatrix, an abstraction for handling large

matrix operations in a data oblivious manner to support vec-

torization (i.e., represent various data processing operations

as matrix operations).

• We also provide a programming abstraction that can be used

to execute a sequence of commands obliviously with opti-

mum cost. We also theoretically prove that combinations of

oblivious methods remains oblivious.

• We have implemented a prototype showing the efficiency of

our proposed framework compared to existing alternatives.

2 BACKGROUND
In this section we provide necessary background on Intel SGX and

Data Obliviousness, in order to understand the motivation and

design of our framework.

2.1 Intel SGX
Intel SGX is a new CPU extension for executing secure code in Intel

processors [12]. In SGX computation model, programmers need

to partition the code into trusted and untrusted components. The

trusted code is encrypted and integrity protected, but the untrusted

code is observable by the operating system. During the program

execution, the untrusted component creates a secure component

inside the processor called enclave and loads trusted code into it.

After creating the enclave, users can verify that intended code is

loaded and securely provision the code with secret keys, which

is called attestation. Internally, the infrastructure uses Enhanced
Privacy ID (EPID) [22] for hardware based attestation. In addition,

trusted and untrusted components communicate between each

other using programmer defined entry points. Entry points defined

in trusted code is called ECalls, which can be called by untrusted part
once enclave is loaded. Similarly, entry points defined in untrusted

code is called OCalls, which can be called by the trusted part. More

details about the SGX execution model are described in [24, 48].
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2.2 Data Oblivious Execution
A program is called data oblivious if for all data inputs the program

executes exactly the same code path. The main benefit of data obliv-

iousness is that any powerful adversary that is capable of observing

code execution, does not learn anything extra about the data based

on the code execution path. To explain data obliviousness, we also

have to clearly define the capabilities of an adversary in our design.

We assume that an adversary in an SGX environment can observe

memory accesses, time to execute, OCalls, and any resource usages

fromOCalls. However, an adversary in SGX cannot observe internal

CPU registers.

We define a program is data obvious in the SGX environment if

the samememory regions are accessed for all possible input datasets.

For example, data arithmetic operations, such as add, mult, etc.,
are by definition data oblivious because the instruction performs

the same task irrespective of any input data. However, conditional

instructions, such as, jne, jeq2 are not data oblivious because these
instruction force different part of the code to be executed based on

input data.

To implement programs that require such conditional operations,

we first assign values from different possible code paths, to different

registers, then set a flag based on the condition that we want to

test, swap according to the flag, and finally return the contents

of a fixed register. Such techniques are used in previous works

(e.g., [46, 49]). Data oblivious approach of programming protects

against attacks from access pattern leakage as described in [34, 44].

Because these attacks are based on the frequency of data access for

different input and data obliviousness guarantees that data access

frequency should be the same irrespective of same sized input data.

3 SECURE DATA ANALYTICS FRAMEWORK
Processing a large amount of data with Intel SGX is particularly dif-

ficult because of the limited memory of a given enclave. In current

SGX processor we can allocate at most about 90MB of dynamic

memory inside an enclave. In addition, as discussed in subsec-

tion 2.2, data access patterns during encrypted data processing

could also leak significant information.

Furthermore, from our own experience, we observe that Intel

SGX development life cycle is somewhat time consuming. We first

need to divide the whole program into two components - trusted

and untrusted parts with defined entry points. Next, we have to care-

fully implement the required algorithms in trusted part in C/C++.

Finally we have to deploy into a SGX server, verify the loaded code,

provision secret, and finally run the code. However, in modern data

analytics, we observe that data scientists tend to prefer interactive

tools. In fact, popular analytical platforms (such as R [8], Octave [4],

Matlab [5], Apache Spark [1], etc.) offer REPL (Read-Eval-Print

Loop) environments where users can perform operations on data,

get instant feedback, and repeat the whole process. In a recent sur-

vey [35] on data science practitioners, top 3 preferred programming

languages for data scientists are, R, Python, and SQL. Furthermore,

only 9% of the data scientists in the survey use C/C++ for data anal-

ysis. One major reason behind this might be, easy data exploration

and visualization is often more important than writing the most

optimized solution.

2
jne, jeq are assembly instructions for jumping based on zero flag.

We also observe that complex data analytics tasks can be ex-

pressed as basic matrix operations if the data is represented as a

matrix. In fact, entire language and analytical stacks, such as, Mat-

lab [5], Octave [4], NumPy [6], and Pandas [7], has been proposed

around matrix operations. Moreover, basic matrix operations, such

as, multiplication and transpose are by definition data oblivious.

In light of these observations, we propose an efficient and inter-

active framework to handle large encrypted datasets for generic

data analytics tasks by leveraging the Intel SGX instruction set. Our

main objective is to bring matrix based computation into secure

processing environment in a way that would allows us to perform

any matrix operation on large encrypted matrices. So we propose

BigMatrix Runtime, and at the core we have BigMatrix abstraction

that split a large matrix into a sequence of smaller ones and per-

forms individual matrix operations using smaller block. BigMatrix

handles the blocking and encryption of the small block automati-

cally and transparently. In addition, we add other key operations,

such as, sorting and selection, on top of BigMatrix abstraction to

support most data analytics computations.

3.1 Setup, Protocols, and Threat Model
In our framework, we consider a setup where a single participant

or multiple participants are connected to an Intel SGX enabled

server. The server is assumed to be controlled by an adversary, who

can observe the main memory (RAM) content and main memory

processor communications. Furthermore, the adversary can delete/-

modify the stored data, provide wrong data, and stop the execution

of the enclave. At the same time, due the capabilities of the Intel

SGX, we assume that the attacker cannot modify the code that is

running in the enclave.

Participants do not trust each other with their data but they want

to execute a program that will perform some data analytics task

over all the participants’ data. Also, we assume that the participants

are not sending invalid datasets or aborting the process abruptly.

In addition, each user has the capability to verify that the server

has loaded the proper code. If the server does not load the proper

code, participants will be able to detect the deviation. All the com-

munications between the server and the participants are done over

a secure communication channel, such as, Https. We also assume

that the owner of the server is not colluding with the participants.

In our framework, given the attacker capabilities, our goal is to

detect any tampering by the attacker and limit information leakage

during the data analytic task execution process. Furthermore, we

want to make the framework suitable for multi-user setting where

different parties can combine their data and build collaborative

model. To achieve these goals, our proposed secure data analytics

framework had three distinct phases: 1) Code agreement and load-

ing phase that allows multiple parties to agree on the common task

that will run on their joint data, 2) Input data and encryption key

provisioning phase that allows data encryption and key sharing, 3)

Result distribution phase that provides the computation result to

multiple users. We discuss these phases in detail in Appendix C.

3.2 Overview
BigMatrix Runtime has two major components: 1) BigMatrix Run-
time Client, where a user provides input data and tasks to perform
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Figure 1: Framework Overview.

on the input data, 2) BigMatrix Runtime Server, which interprets

user’s commands and performs the requested tasks. Before going

into the details of each component, we first provide a top-level

overview of code execution in BigMatrix Runtime.

A user first makes sure that the server is started properly with se-

cure enclave code and provision the enclave with proper secret keys

using proposed protocols. Next, the user provides input program

and data to the BigMatrix Runtime client, which uses a compiler
to compile the program into execution engine compatible code and

perform error checking. The client also encrypts the data using the

proper key. Next, the client sends the code and encrypted data to

Service Manager. Service Manager next performs block size opti-

mization and loads encrypted data in the enclave with optimum

block size information. Then service manager starts the execution

engine that performs the user specified operations. Once the oper-

ation execution has been finished Service Manager sends enclave

generated data back to the client, which later displays the result

back to the user.

BigMatrix Runtime client consists of two components: a) Client

and b) Compiler. BigMatrix Runtime server consists of six logical

components: a) BigMatrix Library, b) Execution Engine, c) Compiler,

d) Block Cache, e) Block Size Optimizer, and f) Service Manager. In

the rest of this section, we explain each of these components.

3.3 Key Operations of BigMatrix Library
At the very bottom layer, we have BigMatrix library, which con-

tains sets of operations on our proposed BigMatrix abstraction. A

BigMatrix is essentially a matrix of smaller matrices. Basically, we

compute a specific block size that we can fit into SGX enclave and

split a large input matrix into smaller blocks and perform opera-

tions using these blocks. This abstraction is needed since SGX is a

memory constrained environment.

We have defined few basic functions in BigMatrix library, which

we later use to build more complex operations. Our defined func-

tions falls into the following five categories:

1. Data access operations. a) load(participant_id, mat_id):
load matrix with mat_id from the storage, which is encrypted

with session key of participant, participant_id. b) publish(A):
publish the matrix A for all the participants. c) Partial access op-

erations: get_row(A, i), set_row(A, i, r), get_column(A, j),
set_column(A, j, c), get_element(A, i, j), set_element(A,
i, j, v).

We defer the discussion of how we serialize, encrypt, store, and

load the BigMatrix in subsection 3.8, once we define other relevant

components of the system.

2. Matrix Operations. a) scalar(op, A, value): perform scalar

operation op on each element of input matrix A and return the out-

put, where op is a binary operation such as addition, multiplication,

and, or, etc., A is a BigMatrix and value is numeric value. b) ele-
ment_wise(op, A, B): perform element wise operation op on two

big matrices and return the result. c) multiply(A, B): perform ma-

trix multiplication of big matrices A and B. d) inverse(A): perform
inverse of big matrix A. e) transpose(A): create the transpose of
big matrix A.

3. Relational Algebra Operations. a) where(A, condition):
perform basic selection operation on A for a given condition and

return a 0-1 column matrix. b) sort(A, columns, direction):
sort the rows of matrix A using bitonic sort. c) join(A, B, condi-
tion, k): perform SQL like join of A and B based on condition. k
is a parameter to ensure obliviousness, which we discuss in Appen-

dix A.9. d) aggregation(A, commands, columns): perform basic

aggregation on A on columns. Allowed aggregation commands are

sum, average, count, min and max. We also implemented argmax(A,
columns) and argmin, which provide the index of highest and low-

est value row in the matrix.

4. Data generation operations. a) rand(m, n), zeros(m, n),
ones(m, n): generate a BigMatrix of size m × n containing uniform
random numbers, zeros and ones respectively. b) eye(n): generate
an identity matrix of n × n.

5. Statistical Operations. a) norm(A, p): compute p-norm of the

vector (n × 1 matrix) A. b) var(A): compute variance of the vector

A.
All the operations in our BigMatrix library also have pre-defined

trace, which is the amount of information leakage due to perform-

ing the operation. For example, the multiply operation leaks the

information about the size of the matrix A and B. We refer readers

to Appendix A for more internal details including trace and cost of

important BigMatrix operations.

3.4 Compiler and Execution Engine —
Programming Abstraction

As stated earlier, quick and secure data analytical development cycle

is a major target of the proposed framework. To that end, we define

a compiler and execution engine that can process and execute code,

which is written in a python-like language. The execution engine

is part of our trusted environment and can interpret assembly-like

instructions, such as, C = multiply(A, B). On the other hand, the

compiler resides outside the enclave and creates execution engine

compatible code from our custom language, which is inspired by

languages such as python and octave. The main reason behind such

a split architecture is to reduce the size of TCB (trusted comput-

ing base). There is no regular expression or context free grammar

functionality in SGX library. So if we want to support interactive

computation in any language we would need to bring in the com-

plete grammar processing library into the TCB, which increases the

risk of introducing potential vulnerability through bugs of these

libraries. On the other hand, we could build a parser that outputs

code into X86 assembly architecture and put more simplified execu-

tion engine. However, we avoided this option because traditional

assembly instruction set has complex branching instructions that
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are very hard to convert to the equivalent data oblivious version.

Furthermore, the instruction set is highly restricted to a fixed set

of registers, which is not the case for our execution engine.

Our compiler is divided into five components: Lexical analyzer,

syntax analyzer, semantic analyzer, optimizer, and code generator.

Lexical analyzer takes the input file and outputs a stream of tokens.

Syntax analyzer takes the token streams and creates a syntax tree

representing the input source code. During syntax tree creation

syntax analyzer also lists any syntax errors. Semantic analyzer ana-

lyzes the syntax tree and checks for semantic mistakes. One of the

semantic tests that we perform is matrix conformability [32], where

we test operand matrices whether they have proper dimensions for

intended operations. In this stage, we also perform a sensitive data
leakage analysis, where we check if any sensitive information is

leaking as a side effect of some operations. For a given program,

we define the non-sensitive information as: (a) input size, and (b)

constants in the input program. On the other hand, we also know

the trace (set of values per operation that is disclosed) of all the op-

erations in the input program. Semantic analyzer checks for items

in the trace that is not non-sensitive and warns users of possible

information leakage. For example, our semantic analyzer will raise

error for the following input code.

X = load ( 0 , pa th / to / X_Matrix )

s = count ( where (X[ 1 ] >= 0 ) )

Y = z e r o s ( s , 1 )

p u b l i s h ( Y )

Because, here the value of s is in the trace of function zeros but the
value is not in the non-sensitive data list. Next, optimizer performs

few compile time optimizations, such as basic query optimization

(detail in subsection 3.7), and matrix multiplication order optimiza-

tion. Finally, code generator takes the syntax tree and generates

execution engine compatible code. In addition, our compiler also

outputs complete trace of a input program so that programmers

can easily understand information leakage.

The execution engine can run in two modes: interactive and

non-interactive. In the interactive mode, a user loads the enclave,

verifies, starts a session, provides sequence of instructions, and

closes the session at will. So the system does not know all the

instructions to be executed. In this mode, the values of variables

are retained until user explicitly unset it. In non-interactive mode,

the user provides completed tasks to be executed and the compiler

generates necessary unset commands depending on the last used

instructions.

Our framework supports variables of types int32, int64, dou-
ble, BigMatrix of different types, and fixed length strings. The

language is not strictly typed, i.e., during initialization a user does

not have to specify the type of a variable. Our system can handle

fixed length loops and we are assuming that the number of loop

iterations can be leaked to the adversary (e.g., constant or some

known value, such as rows, columns, block_size). In addition, we

also protect intermediate data tampering. We keep an internal table

of matrix id and header MAC (message authentication code) of

matrices in a computation. So, if an operating system sends invalid

data (i.e., an active attack, or unintentional data corruption), our

execution engine will be able to detect it. We discuss our MAC

generation in subsection 3.8.

An Example. Now we provide an example on how our framework

could be used to execute fundamental data analytics tasks. Linear
Regression is an approach for modeling the relationship between

a scalar dependent variable y and one or more independent vari-

ables [37]. Let,m be the number of inputs,X be the training dataset,

Y be the output of training dataset, X (j)
and Y (j)

be the jth training

set and class respectively, Θ be the regression parameters, and ŷ be

the predicted class of test input x , then

ŷ = ΘT x

where, Θ = (XTX )−1XTy . In our programming language, we can

compute the Θ using the following code snippet.

x = l oad ( 0 , pa th / to / X_Matrix )

y = l oad ( 0 , pa th / to / Y_Matrix )

x t = t r a n s po s e ( x )

t h e t a = i n v e r s e ( x t ∗ x ) ∗ x t ∗ y

pub l i s h ( t h e t a )

Our compiler will convert the above code snippet into the follow-

ing sequence of instructions that can be executed by our execution

engine.

x = l oad ( 0 , X_Matr ix_ID )

y = l oad ( 0 , Y_Matr ix_ID )

x t = t r a n s po s e ( x )

t 1 = mu l t i p l y ( xt , x )

unse t ( x )

t 2 = i n v e r s e ( t 1 )

unse t ( t 1 )

t 3 = mu l t i p l y ( t2 , x t )

unse t ( x t )

unse t ( t 2 )

t h e t a = mu l t i p l y ( t3 , y )

unse t ( y )

unse t ( t 3 )

p u b l i s h ( t h e t a )

Again if the code ran in the interactive mode, our compiler would

not generate the unset instructions. In this case, the leaked infor-

mation to adversary is the size of x and y matrices and sequence of

operations.
3

We also defined PageRank, Naive Bayes, and K-Means clustering

algorithm in our programming language. We refer readers to Ap-

pendix B for these examples.

3.5 Block Cache
Next we briefly describe a cache layer which caches the loaded

blocks and dynamically replaces existing big matrix blocks from

cache. In addition, we can also minimize the total cache misses. In

the non-interactive mode, i.e., where a user provides the entire work

load, we replace the cache using furthest in future policy [20]. It is

particularly possible in our case since the work load is known and

most importantly the code is data oblivious meaning data access

3
We discuss the security guarantees of our framework in more detail in section 4.
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does not depend on input dataset content rather only on the size.

The furthest in future is known as an optimal policy, where we

replace the cache element that will be required furthest in the

future. On the other hand, in the interactive mode, we replace in

least frequently used model.

3.6 Block Size Optimization
In our experiments, we observed that the cost of each operation

varies depending on the block size. So, we propose an optimization

mechanism that reduces the total cost of a sequence of operations.

We formalize this optimization by assuming that the input program

can be represented as a directed acyclic graph (DAG) of operations.

Let, O = {o1,o2, ...,on } be the set of operations, M = {M1, M2,

...} be all big matrices in the computation that are divided into

blocks, B ∈ Rd be the block dimensions, where d is the number

of dimensions (for simplicity we are considering d = 2), B =
{B1,B2, ...} be the sets of the block dimensions of BigMatrix set

M, Π(oi ,Mi ,Bi ) is the processing cost of oi onMi that is blocked

as Bi size blocks, ∆(M,Bi ,Bj ) is the cost of converting the block

size of BigMatrixM from Bi to Bj , λ(oi ,B,B) is the peak memory

required to perform operation oi with input BigMatrix blocked in

B and output BigMatrix blocked in B.
Next, we define functions that will help us define the cost func-

tion. Let, P = {ρ1, ρ2, ..., ρm } be a program defined as DAG of

operation, Op(ρi ) ∈ O operation of node ρi , InNodes(ρi ) ⊆ P is

the node that is input of ρi , InBlks(ρi ) is the sets of input blocks di-
mension of node ρi , InBlks(ρi )[j] is the jth input block dimension

of node ρi , OutBlk(ρi ) is the output block dimension of node ρi ,
InBigM(ρi ) is the set of input BigMatrix of node ρi , OutBigM(ρi ) is
the output BigMatrix of node ρi .

Therefore, the cost of operation of node ρi can be defined in the

following:

cost(ρi ) = Π(Op(ρi ), InBigM(ρi ), InBlks(ρi ))

+
∑

ρ j ∈InNodes(ρi )

[
∆(OutBigM(ρ j ), OutBlk(ρ j ), InBlks(ρi )[j])

]
Finally, we can define the minimization function as∑

ρi ∈P
cost(ρi )

subject to: λ(Op(ρi ), InBigM(ρi ), OutBigM(ρi )) < MaxMem (memory

limit) and InBigM(ρi ) is conformable (i.e., the dimensions are suit-

able for the operation.) The above formalized optimization can

easily be converted into an integer programming.

A block optimization example for linear regression. Next, we
show how to apply our optimization technique to minimize the cost

for executing linear regression training phase, i.e. θ computation,

as shown earlier. The corresponding execution tree is illustrated

in Figure 2. Here,X andY are two input matrices formatted into Big-

Matrix format with block size of (brX ,bcX ) and (brY ,bcY ). Again,
for simplicity we are considering 2-dimensional matrices. The first

operation in our framework is Transpose that takes input of Big-
Matrix X and outputs BigMatrix XT

. Let us assume that for this

operation the input matrix was blocked into (x0,x1), so the output

is blocked into (x1,x0) block. (In reality x0 = brX and x1 = bcX .)

Next, the operation in this program is Multiply that performs ma-

trix multiplication over BigMatrix XT
and X , which are blocked

into (x2,x3) and (x4,x5). The output will be blocked into x2,x5. So
on and so forth. Now we can compute the over all cost in term of

variables x as follows

Cost = ∆(X , (brX ,bcX ), (x0,x1))
+ Π(′Transpose ′,X , (x0,x1))

+ ∆(XT , (x1,x0), (x2,x3))
+ ∆(X , (brX ,bcX ), (x4,x5))

+ Π(′Multiply′, [XT ,X ], [(x2,x3), (x4,x5)]) + ...

Our target here is to assign values to these x variables in such a

way that it satisfies the computation requirements and also reduce

the over all cost. From our experiments, we know the values of Π
and ∆ for different combinations of block size. As observed in our

experimental evaluation, the cost is quite easy to approximatewith a

very low error rate. Finally, it is worth mentioning that, we perform

the optimization outside the enclave using the information already

leaked in the trace of the operations (e.g., the size of data matrix).

Therefore, the optimization will not leak any further information.

Figure 2: Linear regression execution tree for block size op-
timization.

3.7 SQL Parsing and Optimization
Our basic instruction set contains a subset of the SQL operations.

To make the programming easier, we provide a SQL parser that

takes a SQL SELECT query as input and create an optimized se-

quence of instruction to execute the query using our basic com-

mands. For instance, a SQL query A = sql("SELECT * FROM person
WHERE age > 50") would be compiled into A = where(person,
’C:3;V:50;O:=’), (assuming that, ‘age’ is in the third column).

Here, the condition is encoded in postfix notation [31]. More specif-

ically, the C:3 part of the expression means the third column, v:50
means value 50 and O:= means operation equal. We choose postfix

notation because it is easy to evaluate. The compiler can also parse

join queries such as:
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I = s q l ( " SELECT ∗

FROM person p

JOIN person \ _income p i ( 1 )

ON p . i d = p i . i d

WHERE p . age > 50

AND p i . income > 1 0 0 0 0 0 " )

which will be converted as follows

. . .

t 1 = where ( person , 'C : 3 ; V : 5 0 ;O : = ' )

/ / person . age i s in column 3

t 2 = z e r o s ( person . rows , 2 )

se t_co lumn ( t2 , 0 , t 3 )

t 3 = get_column ( person , 0 )

/ / person . i d i s in column 0

se t_co lumn ( t2 , 1 , t 1 )

t 4 = where ( person_income , 'C : 1 ; V : 1 0 0 0 0 0 ;O : = ' )

t 5 = z e r o s ( person_income . rows , 2 )

se t_co lumn ( t5 , 0 , t 6 )

t 6 = get_column ( person_income , 0 )

/ / person_income . i d i s in column 0

se t_co lumn ( t5 , 1 , t 4 )

A = j o i n ( t3 , t5 , ' c : t 1 . 0 ; c : t 2 . 0 ; O : = ' , 1 )

. . .

Our compiler also takes into consideration of SQL optimiza-

tions. In our implementation, we applied a few standard heuristics

such as pushing selection operations [27]. In our future work, we

are considering utilizing optimization engine from popular open-

source databases. However, we also observed that most of these

optimizations heavily depend on existing index and data stored in

the database (e.g., predicate sensitivity). In contrast, our datasets

are encrypted and we protect against data access patterns so index

utilization is not an option for us. Furthermore, optimizations that

depend on data distribution are not applicable due to the sensi-

tive information disclosure issues. It is worth mentioning that, we

only support subset of standard SQL in our current implementation

and our join query requires an additional parameter k that is the
maximum number of row matches from the first table to the second.

3.8 BigMatrix Storage
Next, we briefly discuss how we serialize, encrypt, load and store

the big matrices.

Serialization andEncryption.One important aspect of our frame-

work is that it provides transparent security for large datasets. First,

we compute the number of blocks we need to keep in memory

to perform the intended operations. Next, we compute the total

number of elements that we can keep in memory. Based on these

two values, we partition our matrix into smaller blocks. Also, it is

possible to have edge blocks in a BigMatrix, which does not have

the same number of elements compared to the rest of the blocks.

We serialize each individual block matrix and encrypt the block

with authenticated encryption AES-GCM [26], and store MAC of

all blocks into their header. We also store the total number rows

and the total number of columns into the header. Essentially with

information from header we can find out the necessary details of a

given block and ensure the authenticity and integrity of the indi-

vidual blocks. Finally, we serialize and encrypt the header. Figure 3

illustrates our serialization process.

BigMatrix

(0, 0)

(0, 0)

(4, 3)

(0, 1)

(0, 1) (4, 3)... ... ...Header

BigMatrix Serialization

Header MACMatrix Info MAC(0,0) MAC(0,1) ... ... ...

Header

Serialization Encryption

Header IV MAC Encrypted Serialized Matrix

Matrix

... ... ...

Figure 3: Serialization of a Sample BigMatrix.

Storing and Loading mechanism. As we explained in section 2,

we create secure enclaves using Intel SGX API. To write a BigMa-

trix from enclave to disk we designed init_big_matrix_store,
store_block, and store_header OCall functions. The first func-
tion initialized an empty file for a BigMatrix and assign a randomly

generated matrix id to the BigMatrix. The second function stores

a block of a particular BigMatrix. The third one stores the header

of the BigMatrix. We need to call the store header function after

writing of all the blocks because our header contains MAC of all

the individual blocks to provide the integrity protection. Similarly,

we defined load_header and load_block OCall functions to load

header and blocks of an existing BigMatrix, respectively.

During code execution in the execution engine, we also keep

an internal table of id and header MAC. Every time we store a

BigMatrix using store_header function, we store the header MAC

and matrix id. Every time we load a BigMatrix using load_header
function, we check the header MAC and stop execution in case of

MAC mismatch.

3.9 Writing Customized Operations
In addition to our own basic operations, an expert programmer can

provide customized code to be executed as operations. We designed

our code in such a way that the user just needs to provide us an im-

plementation of a predefined abstract class and add the class name

in a configuration file. During the build process our build script will

look into the configuration file, generate call table for execution en-

gine. Our internal operations are also implemented using the same

mechanism. However, building customized method requires code

building and can easily introduce unintentional vulnerabilities. Fur-

thermore, the programmers need to guarantee data obliviousness

of the implementation. In our current implementation, compiler

considers the input sizes as trace of the implementation. In addition,

the current version of our language does not support functions yet.

We are planning to add the function support in future version.
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4 SECURITY ANALYSIS
In this section, we give an overview of the oblivious execution guar-

antees provided by our system. As we discuss in subsection 3.4, our

framework is designed to detect any modification to the underlying

data and program execution. Furthermore, we assume that due to

SGX capabilities, a malicious attacker cannot observe the register

contents. So an attacker can only observe the memory and disk

access patterns. Below, we formally define what is leaked during

the program execution for an adversary that can observe only mem-

ory and disk access patterns. Protection against other type of side

channel attacks such as timing, energy consumption is outside the

scope of this work.

4.1 Composition Security
Let, D = {D1, ..,Dα } be the input data, I = {I1, ...Iα } be the

encrypted input data, R = {R1, ...,Rβ } be the intermediate output

set, R = {R1, ...Rβ } be the encrypted intermediate output set,O be

the output, O be the encrypted output, F = {F1, ...,Ff } be the set
of available oblivious functions, where each function Fi takes the
predefined number of inputs from I∪R and outputs the predefined

number of outputs from R ∪ {O} set. Cη = {F1, ...,Fη } be what
the code participants agreed on. Here, Cη is a combination of η
functions from F.

• Input Access Pattern (Ap ): Suppose Fi is the ith func-

tion executed in Cη and during the execution Fi accessed
{I1, ...,Iz }, i.e., Fi depends on {I1, ...,Iz }, then, Ap i = {1,
..., z}. Finally, Ap (Hη ) is defined as the sequence of all the

Ap i . The input access pattern captures the access sequence

of input data during the secure code execution.

• Intermediate Access Pattern (Bp ): Suppose Fi is the ith
function executed in Cη and during the execution Fi ac-
cessed {R1, ...,Rz }, i.e., Fi depends on {R1, ...,Rz }, then,
Bp i = {1, ..., z}. Finally, Bp (Hη ) is defined as the sequence

of all the Bp i . The intermediate access pattern captures the

access sequence of intermediate data during the secure code

execution.

• Intermediate Update Pattern(Up ): Suppose Fi is the ith
function executed in Cη and during the execution Fi modi-

fies {R1, ...,Rz }, e.g., Fi outputs on {R1, ...,Rz }, then,Up i
= {1, ..., z}. Finally,Up (Hη ) is defined as the sequence of all
theUp i . The intermediate update pattern captures the up-

date of intermediate data during the secure code execution.

• History(Hη ):The history of the system isHη = (D,R,O,Cη ).
• Trace (λ): Let |Ii | be the size of encrypted input Ii , |Ri | be
the size of intermediate output Ri , and |O| be the size of

the output. Then, trace λ(Hη ) = {(|I1 |.., |Iα |), (|R1 |.., |Rβ |),
|O|, Ap (Hη ), Bp (Hη ), Up (Hη )}. Trace can be considered

as the maximum amount of information that a data owner

allows its leakage to an adversary.

• View (v): The view of an adversary observing the system is

v(Hη ) = {I,R,O}. View is the information that is accessi-

ble to an adversary.

Now, there exists a probabilistic polynomial time simulator S that

can simulate the adversary’s view of the history from the trace.

Theorem 4.1. The proposed function composition does not reveal
anything other than the view v .

Proof. We show there exists a polynomial size simulatorS such

that the simulated viewvS (Hη ) and the real viewvR (Hη ) of history
Hη are computationally indistinguishable. LetvR (Hη ) = {I,R,O}
be the real view. Then S adaptively generates the simulated view

vS = {I∗,R∗,O∗}
S first generates α number of random data of size {|I1 |, ..., |Iα |}

and saves it as I∗
. Then S generates random data for R∗ = {|R1 |,

..., |Rβ |} similarly.

Now, for the ith function Fi in Cη , S accesses I∗[j] where j ∈
Ap (i), S accesses R∗[j] where j ∈ Bp (i), S replaces value in R∗[j]
where j ∈ Up (Hη )(i) with new random and finally during the last

operation S generates random data of size |O| and sets it to O∗
.

Since each component of vR (Hη ) and vS (Hη ) are computation-

ally indistinguishable, we conclude that the proposed schema satis-

fies the security definition. □

4.2 Information Leakage Discussion
As we discussed all the data that is kept outside of the enclave is

encrypted using AES-GCM mode, the storage does not leak any

information and any modification to the stored data can be detected

easily.

Although, our proposed framework is data oblivious, as stated in

the above proof, we allow certain information leakage for efficiency.

Intuitively, we allow the adversary to know the input and output

size of a function. In addition, since trying to hide intermediate

operation types would be too costly, we allow the adversary to

know/infer intermediate input output operations required for the

execution of a function. If we were to hide the operation type, we

would have to perform equal number of operations for all functions

(e.g., trying to hide whether we are doing secure matrix multipli-

cation versus secure matrix addition on two encrypted matrices).

Otherwise, the adversary will learn some information about the

performed function. In our experimental evaluation, we observed

that the overhead varies widely based on the intermediate functions.

So, forcing all the functions to perform the exact same number of

operations would make the framework very inefficient especially

for large data sets.

Another issue is whether the size of the intermediate results can

disclose any sensitive information. All of the matrix operations in

our framework have fixed size outputs given the input data set size.

Therefore, the size information is already inferable by knowing

the matrix operation type and the input data set size. Therefore,

intermediate result size does not disclose any further information.

In some cases, to prevent leakage due to revealing intermediate

result size, we may skip certain optimization heuristics. For exam-

ple, as observed in [56], the heuristic of pushing selection predicates

down the relational algebra operation tree may be skipped to pre-

vent intermediate result size leakage. So our optimization heuristics

discussed in subsection 3.7 could be turned off to prevent this type

of leakage.

In other cases, intermediate results may reveal some sensitive

information. For example, consider the statement s = count(
where(X[1]>=0)) discussed in subsection 3.4 where we learn the
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Figure 4: Load time encrypted vs. unencrypted
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Figure 5: Scalar Multiplication time encrypted vs. unencrypted for different matrix (a) and block size (b). Surface plot of
encrypted execution time for different block size (c).

number of tuples in X that has column 1 value bigger or equal than

0. If s value is used in an operation that results in an object cre-

ation (e.g., y=zeros(s)), then the sensitive s value could be leaked

by observing the output size. To protect against such a leakage,

our compiler automatically raises a warning as discussed in subsec-

tion 3.4. This way users may consider changing their programs

to prevent such leakage. Still, we believe that this will not be an

issue in many scenarios. For example, in the case studies we have

conducted such a leakage never occurred.

5 EXPERIMENTAL EVALUATIONS
In this section, we perform experimental evaluations to show the

effectiveness of our proposed system. We developed a prototype

application using Visual Studio 2012 and Intel Software Guard Exten-
sions Evaluation SDK 1.0 for Windows. We perform the experiments

on a Dell Precision 3620 computer with Intel Core i7 6700 CPU, 64GB
RAM, running Windows 7 Professional.

5.1 Individual Operation Performance

Experiment Setup. To understand the performance of the indi-

vidual operations, we generated random data sets with varying

sizes and observe the time it takes to perform important operations.

However, we acknowledge that the time is sensitive to other events

occurring on the operating system. So we rerun the same experi-

ment (minimum 5 times) and report the average time. In addition,

for all the individual operation experiments, we reported the results

from encrypted and unencrypted version of our operations. For the

unencrypted version, we use the SGXmemory constrained environ-

ment to perform the same operations without encryption. In this

way we can observe the encryption overhead of the system. We did

not consider an implementation outside the enclave as a base line,

because we observe that the same operations inside enclave takes

significantly longer time compared to the outside enclave version.

This might be due to the fact that SGX by itself does encryption

of the pages and cannot really utilize existing caching mechanism.

Finally, to ensure the correctness of our framework we collected

data access trace of all the operations for different inputs of the

same size and checked whether they match.

Load Operation. We start with load operation, which consists of

loading data encrypted with user key, decrypt it, and store again

with session key for further use (e.g., the key stored for writing

intermediate results to the disk during the operation). As explained

in section 3, we break a BigMatrix into smaller blocks and then

load-store each block, as SGX enclave can allocate a certain amount

of memory. In addition, we also observe that we cannot pass large

amount of data through ECalls and OCalls. So, we had to further
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Figure 6: Element-wise multiplication execution time encrypted vs. unencrypted for different matrix size (a) and block sizes
(b). Surface plot of encrypted element-wise matrix multiplication (c).

break the block to smaller chunks. Figure 4 illustrates the perfor-

mance of load operation for randomly generated data. We report

three different experiments. In Figure 4(a), we report load time vs

matrix size for block size of 1000 × 1000. We observe that loading

time increases with size of the matrix. In Figure 4(b), we report load

time vs block size for the matrix 3000× 3000. Here, we observe that

certain block size causes load time to increase significantly. Finally

in Figure 4(c), we report the effect of the chunk size in load time.

We observe that the impact of the chunk size over the loading time

is insignificant, so we do not report the chunk size experiments

here. Furthermore, in each of the cases, we observe that encryption

has very little overhead.

Scalar Operations. Next, we report the performance of scalar

operations. We perform the scalar multiplication on varying matrix

and block sizes as illustrated in Figure 5. In particular, we perform

the scalar multiplication of a random value to all the elements

of input matrix in a block-by-block manner and store the result

as a different matrix. Here, we again observe that the operation

time increases with matrix size in Figure 5(a). However, the block

size change does not affect the operation time in most cases as

illustrated in Figure 5(b). In Figure 5(c), we also report a surface plot

of encrypted execution time of the scalar multiplication. Here x , and
y axis represents block row and block column numbers, respectively,

i.e., a point in x ,y plain represents a block dimension, and z axis
represents the execution time. We observe that the execution time

remains steady and shows steady growth.

Element-wise Operation. Next, we report the performance of

element-wise operations. For an element-wise operation, we take

two randomly generated matrix and perform an element-wise mul-

tiplication and store the result. Similar to the scalar operation, we

observe that the operation time is almost linearly proportional to

the matrix size (in Figure 6(a)). Also we observe that the block size

does not have huge effect on the operation time (in Figure 6(b)).

MatrixMultiplicationOperation. In Figure 8, we report the time

required to perform the matrix multiplication of two randomly

generated matrices of varying matrix size and block size. Similar

to the previous cases, we observe that matrix multiplication time

linearly depends on matrix size (in Figure 8(a)). However, here

we also observe that the overhead of encryption is very low due

to the intensive computation required for matrix multiplications.

In addition, we observe a big difference in various block sizes as

illustrated in Figure 8(b). Here we observe a steady growth in the

operation time with the block size increment. This can be attributed

to the large number of memory access for multiplication. For a

larger block size, our framework has to perform a large number

of memory accesses. And in this case, load-store and encryption-

decryption overhead is relatively smaller compared to the memory

accesses and computation. So we observe a significant increase in

the operation time.

From these sets of experiments, we observe that the operation

time is almost always linearly proportional to the size of the matrix.

However, block size has an important and varying impact on the

execution time. Each operation behaves differently based on these

two parameters. We argue that this is due to the nature of the

operation that we perform on blocks in memory during various

operations.

Transpose, Inverse, and Sort Operation. Next, we illustrate per-
formance of transpose, inverse, and sort operations in Figure 7.

Again, we observe that the required time is proportional to the size

of input matrix. For the matrix inverse experiments, we take square

matrix of different sizes and split it into 500 × 500 elements size

blocks and perform the inverse according to our iterative matrix

inverse algorithm described in Algorithm 1. We observe that the

time increment is correlated with the size of the matrix. For the

sort experiments, we generated three matrices one with random

data, one in ascending sorted order, and one descending sorted, and

ran our bitonic sort implementation. We observe that the required

time is exactly the same for all three cases. This affirms our claim

of data obliviousness as well.

Relational Operations. Finally, we perform the experiments that

highlight the performance of relational operations. Similar to our

previous experiments, we observe that relational operations also

show linear growth in execution time with input matrix size as

illustrated in Figure 9.
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Figure 7: Matrix transpose, inverse and sort operation performance.
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Figure 8: Matrix multiplication time encrypted vs. unencrypted for different matrix size (a) and block size (b). Surface plot of
encrypted matrix multiplication execution time for varying block size (c).
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Figure 9: Relational operations performance encrypted vs. unencrypted.

5.2 Case Studies
In this subsection, we perform experiments to show the effective-

ness of our overall framework to solve real-world complex problems

and the potential information leakage in each case.

Linear Regression.We start with performing linear regression on

random datasets. We chose linear regression because it is commonly

used in many scientific studies [45, 51]. The time required for the

execution is reported in Figure 10. We observe that the operation

time is proportional to the input size. This is due to the fact each

internal operation to compute θ exhibits a linear growth property.

Next, we report the execution time to compute the θ on two real

world machine learning datasets: USCensus1990 [43] and Online-

NewsPopularity [28] from UCI Machine Learning Repository [10].

In both cases, we take one column as the target variable and others

as the input feature. The results are given in Table 1.

As we have proved in section 4, an attacker (e.g., a malicious

operating system) can learn limited information due to the data

analytics task execution over the encrypted data. In this case study,

basically, regression is executed using a sequence of operations
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Figure 10: Linear Regression time encrypted vs. unen-
crypted.

Data Set Rows BigMatrix Encrypted

USCensus1990 2,458,285 3m 5s 460ms

OnlineNewsPopularity 39,644 2s 250ms

Table 1: Time results of linear regression on real datasets.

with fixed input, output, and block size. More specifically, for the

USCensus1990 case, an adversary can observe that we are perform-

ing a sequence of matrix operations on n ×m and n × 1 matrix, and

we are publishingm × 1 matrix, where n = 2, 458, 285,m = 67, and

the sequence of operations are load, load, transpose, multiplication,

inverse, multiplication, multiplication, and publish. The adversary

can also observe the individual operation’s input-output size. This

information is trivially leaked based on the operation types and

the input data set size. In addition, the adversary can know the

block size used in each operation. In summary, an attacker can only
infer that regression analysis is done over a matrix of size n ×m
for specific n andm values, nothing else.

PageRank. We chose PageRank as another case study, since it

has been extensively used in link analysis. In our experiments,

We use 3 directed graph datasets: Wikipedia vote network [38],

Astro-Physics collaboration network [39] and Enron email net-

work [40] from Stanford Network Analysis Project [9]. We generate

the adjacency matrix of these networks and perform 40 iteration of

PageRank. The execution time is reported in Table 2. We observe

that as the dataset size increases the time increases significantly.

That is because the total number of elements of a matrix increases

quadratically as the number of nodes increases.

Data Set Nodes BigMatrix Encrypted

Wiki-Vote 7,115 97s 560ms

Astro-Physics 18,772 6m 41s 200ms

Enron Email 36,692 23m 19s 700ms

Table 2: Page Rank on real datasets.

Information leakage in PageRank is a sequence of operations

with input, output, and block sizes. In addition, the page rank algo-

rithm (as described in Appendix B) has loop instructions, where it

can leak the size of the loop and iteration count of the loop. Further-

more, the program uses a constant, i.e., the damping factor, which

can be leaked too. On a side note, if a user needs to hide a value, our

current implementation requires the user to input it as data rather

a hard-coded constant in the program. Specifically, for Wiki-Votes
example, an adversary can know that the user is performing a se-

quence of operations over a matrix of sizem×m and output another

m × 1 matrix, wherem = 7, 115 and the sequence of operations are

load, assign, assign, rand, norm, scalar, scalar, sub, div, ones, scalar,

element_wise, loop, multiply, and publish. The adversary can also

observe the size of input output of each operation. In addition, the

adversary can also observe the block size used in each operation. In

summary, the adversary can only infer that PageRank is executed

over am ×m matrix, and nothing else.

Join oblivious vs. non-oblivious.We test the overhead of oblivi-

ousness in SQL JOIN query. We take the Big Data Benchmark [3]

from AMP Lab and run a join query SELECT * FROM Ranking
r JOIN UserVisits uv (20) ON (r.pageURL = uv.destURL)
in oblivious and non oblivious mode for the small version of the

dataset, where Ranking table contains 1, 200 rows and 3 columns

and UserVisits table contains 10, 000 rows and 9 columns. We

observe that the non-oblivious version takes 3min 46.3sec and the

oblivious version takes 24min 12.47sec. The main reason behind

the oblivious version being slower is that the value of K (i.e., the

intermediate join size upper limit) is relatively high. In general,

for join operation the overhead in oblivious version is mainly con-

trolled by the parameter K . In this setting, an adversary can only
infer the input size and the value of K , nothing else.

Comparison with a SMC Implementation. Finally, for the sake
of completeness, we also compare our result with a popular multi-

party computation programming abstraction ObliVM [41]. Here

we perform matrix multiplication for varying size matrices using

ObliVM generated code and our BigMatrix construct. As expected,

we observe that the ObliVM takes significant amount of time com-

pared to our solution with Intel SGX in Table 3. A solution using

traditional multi-party circuit evaluation technique will always

incur high overhead compared to a hardware assisted solution, be-

cause of the intensive communication and complex cryptographic

operations. Due to the huge performance difference, we did not

conduct more complex comparisons involving ObliVM.

Matrix ObliVM BigMatrix BigMatrix

Dimension SGX Enc. SGX Unenc.

100 28s 660ms 10ms 10ms

250 7m 0s 90ms 93ms 88ms

500 53m 48s 910ms 706.66ms 675.66ms

750 2h 59m 40s 990ms 2s 310ms 2s 260ms

1,000 6h 34m 17s 900ms 10s 450ms 10s 330ms

Table 3: Two-party matrix multiplication time in ObliVM vs.
BigMatrix.
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6 RELATEDWORK
Because of the availability and sound security guarantees, Intel SGX

is already used inmany studies to build secure systems. For instance,

Schuster et al. [50] proposed a data analytics system named VC3

that can perform Map-Reduce programs with the protection from

SGX. However, VC3 does not provide any side channel information

leakage protection and the authors used a simulator to report the

result. Therefore, Dinh et al. [25] proposed random shuffling to

protect some information leakage of VC3. Most recently, Chandra

et al. [23] proposed using data noise to further mitigate these side

channel leakages. One can argue that with Map-Reduce some of

the operations proposed in our framework can be performed but it

is very well known that different matrix operations such as matrix

multiplication performs poorly in Map-Reduce based system. In

practice, matrix multiplication using map-reduce is only feasible

for sparse matrix. In contrast, our framework is data oblivious and

we do not use any data specific assumption.

Haven [19] is another system that described the ways to adopt

SGX to run ordinary application in a secure manner. However,

the way of running legacy binaries as in Haven can introduce a

controlled side channel attacks with SGX [55]. Recently, T-SGX [52]

and SGX-LAPD [29] have attempted to defeat these controlled side

channel attacks.

There are many other use cases of SGX. In [14], the authors

proposed a secure container mechanism that uses the SGX trusted

execution support of Intel CPUs to protect container processes

from outside attacks. In [36], the authors proposed protecting the

confidentiality and integrity of systems logs with SGX. In [18], the

authors proposed using SGX for computer game protection. In [21],

authors used Intel SGX in building secure Apache Zookeeper [2],

which is a centralized service to manage configurations, naming,

etc. in a distributed setting. Here authors provided transparent

encryption to ZooKeeper’s data.

In [30], the authors theoretically analyzed the SGX system and

proposed a mechanism to use SGX for efficient two-party secure

function evaluation. In [16], the authors also theoretically analyzed

isolated execution environments and proposed sets of protocols to

secure communication between different parties.

In [46], the authors proposed oblivious multi-party machine

learning using SGX based analysis. Here authors proposed mecha-

nism to perform different machine learning algorithm using SGX.

For each algorithm authors proposed a different mechanism to

handle large dataset. No centralized data handling method was

mentioned in the work. In contrast, our work is focused on building

a generic system that can easily be extended and used for large

scale data analytics task that may involve data processing, querying

and cleaning in addition to machine learning tasks. Furthermore,

we consider our work as complimentary to this work since some

of these machine learning techniques could be provided as library

functions in our generic language.

For SQL query processing in a distributed manner in [56], the

authors proposed a package for Apache Spark SQL named Opaque,

that enables very strong security for DataFrames. Opaque offers

data encryption and access pattern hiding using Intel SGX. However,

this work does not provide a general language that can be used to

do other computations in addition to SQL queries. Our proposed

framework supports SQL query capabilities in addition to more

generic vectorized computations.

In addition to SGX based solutions, there has been a long line of

research on building systems using secure processors. TrustedDB [15],

CipherBase [13], and Monomi [54] uses different types of secure

hardware to process queries over encrypted database. Again, these

systems mainly focused on sql type processing and do not provide

a generic language for handling data analytics tasks.

7 CONCLUSION
In this work, we proposed an effective, transparent, and extensi-

ble mechanism to process large encrypted datasets using secure

Intel SGX processor. Our main contribution is the development of

a framework that provides a generic language that is tailored for

data analytics tasks using vectorized computations, and optimal

matrix based operations. Furthermore, our framework optimizes

multiple parameters for optimal execution while maintaining obliv-

ious access to data. We show that using such abstractions, we can

perform essential data analytics operations on encrypted data set

efficiently. Our empirical results show that the overhead of the

proposed framework is significantly lower compared to existing

alternatives.

ACKNOWLEDGEMENT
We thank the anonymous reviewers for their insightful comments.

The research reported herein was supported in part by an NIH

award 1R01HG006844 and NSF awards CNS-1111529, CNS-1228198,

CICI-1547324, IIS-1633331, CNS-1564112, and CNS-1629951.

REFERENCES
[1] Apache Spark - Lightning-Fast Cluster Computing. http://spark.apache.org/.

Accessed 5/16/2017.

[2] Apache ZooKeeper. https://zookeeper.apache.org/. Accessed 5/16/2017.

[3] Big Data Benchmark. https://amplab.cs.berkeley.edu/benchmark/. Accessed

5/16/2017.

[4] GNU Octave. https://www.gnu.org/software/octave/. Accessed 5/16/2017.

[5] Matlab. https://www.mathworks.com/products/matlab.html. Accessed 5/16/2017.

[6] Numpy. http://www.numpy.org/. Accessed 5/16/2017.

[7] Pandas - Python Data Analysis Library. http://pandas.pydata.org/. Accessed

5/16/2017.

[8] R: The R Project for Statistical Computing. https://www.r-project.org/. Accessed

5/16/2017.

[9] Stanford Network Analysis Project. https://snap.stanford.edu/. Accessed

5/16/2017.

[10] UCI Machine Learning Repository: Data Sets. https://archive.ics.uci.edu/ml/

datasets.html. Accessed 5/16/2017.

[11] Rakesh Agrawal, Dmitri Asonov, Murat Kantarcioglu, and Yaping Li. 2006. Sover-

eign joins. In 22nd International Conference on Data Engineering (ICDE’06). IEEE,
26–26.

[12] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. 2013. Innovative

technology for CPU based attestation and sealing. In Proceedings of the 2nd
international workshop on hardware and architectural support for security and
privacy, Vol. 13.

[13] Arvind Arasu, Spyros Blanas, Ken Eguro, Raghav Kaushik, Donald Kossmann,

Ravishankar Ramamurthy, and Ramarathnam Venkatesan. 2013. Orthogonal

Security with Cipherbase.. In CIDR. Citeseer.
[14] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,

Christian Priebe, Joshua Lind, Divya Muthukumaran, Daniel OâĂŹKeeffe, Mark L

Stillwell, et al. 2016. SCONE: Secure linux containers with Intel SGX. In 12th
USENIX Symp. Operating Systems Design and Implementation.

[15] Sumit Bajaj and Radu Sion. 2014. TrustedDB: A trusted hardware-based database

with privacy and data confidentiality. Knowledge and Data Engineering, IEEE
Transactions on 26, 3 (2014), 752–765.

[16] Manuel Barbosa, Bernardo Portela, Guillaume Scerri, and Bogdan Warinschi.

2016. Foundations of hardware-based attested computation and application to

Session E5:  Privacy-Preserving Analytics CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1223

http://spark.apache.org/
https://zookeeper.apache.org/
https://amplab.cs.berkeley.edu/benchmark/
https://www.gnu.org/software/octave/
https://www.mathworks.com/products/matlab.html
http://www.numpy.org/
http://pandas.pydata.org/
https://www.r-project.org/
https://snap.stanford.edu/
https://archive.ics.uci.edu/ml/datasets.html
https://archive.ics.uci.edu/ml/datasets.html


SGX. In Security and Privacy (EuroS&P), 2016 IEEE European Symposium on. IEEE,
245–260.

[17] Kenneth E Batcher. 1968. Sorting networks and their applications. In Proceedings
of the April 30–May 2, 1968, spring joint computer conference. ACM, 307–314.

[18] Erick Bauman and Zhiqiang Lin. 2016. A Case for Protecting Computer Games

With SGX. In Proceedings of the 1st Workshop on System Software for Trusted
Execution (SysTEX’16). Trento, Italy.

[19] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2015. Shielding applications

from an untrusted cloud with haven. ACM Transactions on Computer Systems
(TOCS) 33, 3 (2015), 8.

[20] Laszlo A. Belady. 1966. A study of replacement algorithms for a virtual-storage

computer. IBM Systems journal 5, 2 (1966), 78–101.
[21] Stefan Brenner, Colin Wulf, David Goltzsche, Nico Weichbrodt, Matthias Lorenz,

Christof Fetzer, Peter Pietzuch, and Rüdiger Kapitza. 2016. SecureKeeper: Confi-

dential ZooKeeper using Intel SGX. In Proceedings of the 16th Annual Middleware
Conference (Middleware).

[22] Ernie Brickell and Jiangtao Li. 2011. Enhanced privacy ID from bilinear pairing

for hardware authentication and attestation. International Journal of Information
Privacy, Security and Integrity 2 1, 1 (2011), 3–33.

[23] Swarup Chandra, Vishal Karande, Zhiqiang Lin, Latifur Khan, Murat Kantar-

cioglu, and Bhavani Thuraisingham. 2017. Securing Data Analytics on SGXWith

Randomization. In Proceedings of the 22nd European Symposium on Research in
Computer Security. Oslo, Norway.

[24] Victor Costan and Srinivas Devadas. Intel sgx explained. Technical Report.

Cryptology ePrint Archive, Report 2016/086, 20 16. http://eprint. iacr. org.

[25] Tien Tuan Anh Dinh, Prateek Saxena, Ee-Chien Chang, Beng Chin Ooi, and Chun-

wang Zhang. 2015. M2r: Enabling stronger privacy in mapreduce computation.

In 24th USENIX Security Symposium (USENIX Security 15). 447–462.
[26] Morris Dworkin. Recommendation for Block Cipher Modes of Operation: Ga-

lois/Counter Mode (GCM) and GMAC. http://nvlpubs.nist.gov/nistpubs/Legacy/

SP/nistspecialpublication800-38d.pdf. Accessed 5/16/2017.

[27] Ramez Elmasri. 2008. Fundamentals of database systems. Pearson Education

India.

[28] Kelwin Fernandes, Pedro Vinagre, and Paulo Cortez. 2015. A Proactive Intelligent

Decision Support System for Predicting the Popularity of Online News. In Progress
in Artificial Intelligence. Springer, 535–546.

[29] Yangchun Fu, Erick Bauman, Raul Quinonez, and Zhiqiang Lin. 2017. SGX-LAPD:

Thwarting Controlled Side Channel Attacks via Enclave Verifiable Page Faults. In

Proceedings of the 20th International Symposium on Research in Attacks, Intrusions
and Defenses (RAID’17). Atlanta, Georgia. USA.

[30] Debayan Gupta, Benjamin Mood, Joan Feigenbaum, Kevin Butler, and Patrick

Traynor. Using Intel Software Guard Extensions for Efficient Two-Party Se-

cure Function Evaluation. In Proceedings of the 2016 FC Workshop on Encrypted
Computing and Applied Homomorphic Cryptography.

[31] Charles L Hamblin. 1962. Translation to and from Polish Notation. Comput. J. 5,
3 (1962), 210–213.

[32] Franz E Hohn. 2013. Elementary matrix algebra. Courier Corporation.
[33] Intel. Product Change Notification - 114074 - 00. https://qdms.intel.com/dm/i.

aspx/5A160770-FC47-47A0-BF8A-062540456F0A/PCN114074-00.pdf. Accessed

5/16/2017.

[34] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012. Access

Pattern disclosure on Searchable Encryption: Ramification, Attack andMitigation..

In NDSS, Vol. 20. 12.
[35] John King and Roger Magoulas. 2016. 2016 Data Science Salary Survey. http:

//www.oreilly.com/data/free/2016-data-science-salary-survey.csp. (September

2016).

[36] Vishal Krandle, Erick Bauman, Zhiqiang Lin, and Latifur Khan. 2017. Securing

System Logs with SGX. In Proceedings of the 12th ACM Symposium on Information,
Computer and Communications Security. Abu Dhabi, UAE.

[37] Tze Leung Lai, Herbert Robbins, and Ching Zong Wei. 1978. Strong consistency

of least squares estimates in multiple regression. Proceedings of the National
Academy of Sciences of the United States of America 75, 7 (1978), 3034.

[38] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. 2010. Signed networks

in social media. In Proceedings of the SIGCHI conference on human factors in
computing systems. ACM, 1361–1370.

[39] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph evolution:

Densification and shrinking diameters. ACM Transactions on Knowledge Discovery
from Data (TKDD) 1, 1 (2007), 2.

[40] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. 2009.

Community structure in large networks: Natural cluster sizes and the absence of

large well-defined clusters. Internet Mathematics 6, 1 (2009), 29–123.
[41] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. 2015.

Oblivm: A programming framework for secure computation. In Security and
Privacy (SP), 2015 IEEE Symposium on. IEEE, 359–376.

[42] Frank McKeen, Ilya Alexandrovich, Ittai Anati, Dror Caspi, Simon Johnson,

Rebekah Leslie-Hurd, and Carlos Rozas. 2016. Intel® Software Guard Extensions

(Intel® SGX) Support for Dynamic Memory Management Inside an Enclave. In

Proceedings of the Hardware and Architectural Support for Security and Privacy

2016. ACM, 10.

[43] Christopher Meek, Bo Thiesson, and David Heckerman. 2002. The Learning-

Curve Sampling Method Applied to Model-Based Clustering. Journal of Machine
Learning Research 2 (2002), 397.

[44] Muhammad Naveed, Seny Kamara, and Charles VWright. 2015. Inference attacks

on property-preserving encrypted databases. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. ACM, 644–655.

[45] John Neter, Michael H Kutner, Christopher J Nachtsheim, and William Wasser-

man. 1996. Applied linear statistical models. Vol. 4. Irwin Chicago.

[46] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Sebastian

Nowozin, Kapil Vaswani, andManuel Costa. 2016. Oblivious Multi-Party Machine

Learning on Trusted Processors. In 25th USENIX Security Symposium (USENIX
Security 16). USENIX Association, Austin, TX, 619–636. https://www.usenix.org/

conference/usenixsecurity16/technical-sessions/presentation/ohrimenko

[47] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[48] Rafael Pass, Elaine Shi, and Florian Tramer. 2016. Formal Abstractions for Attested

Execution Secure Processors. Cryptology ePrint Archive, Report 2016/1027.

(2016). http://eprint.iacr.org/2016/1027.

[49] Ashay Rane, Calvin Lin, and Mohit Tiwari. 2015. Raccoon: closing digital side-

channels through obfuscated execution. In 24th USENIX Security Symposium
(USENIX Security 15). 431–446.

[50] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus

Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015. VC3: Trustworthy

data analytics in the cloud using SGX. In Security and Privacy (SP), 2015 IEEE
Symposium on. IEEE, 38–54.

[51] George AF Seber and Alan J Lee. 2012. Linear regression analysis. Vol. 936. John
Wiley & Sons.

[52] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. 2017. T-SGX:

Eradicating controlled-channel attacks against enclave programs. In Proceedings
of the 2017 Annual Network and Distributed System Security Symposium (NDSS),
San Diego, CA.

[53] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xi-

angyao Yu, and Srinivas Devadas. 2013. Path ORAM: An Extremely Simple Obliv-

ious RAM Protocol. In CCS. 299–310. https://doi.org/10.1145/2508859.2516660
[54] Stephen Tu, M Frans Kaashoek, Samuel Madden, and Nickolai Zeldovich. 2013.

Processing analytical queries over encrypted data. In Proceedings of the VLDB
Endowment, Vol. 6. VLDB Endowment, 289–300.

[55] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-Channel At-

tacks: Deterministic Side Channels for Untrusted Operating Systems. In Proceed-
ings of the 2015 IEEE Symposium on Security and Privacy (SP ’15). IEEE Computer

Society, Washington, DC, USA, 640–656. https://doi.org/10.1109/SP.2015.45

[56] Wenting Zheng, Ankur Dave, Jethro Beekman, Raluca Ada Popa, Joseph Gonzalez,

and Ion Stoica. 2017. Opaque: A Data Analytics Platform with Strong Security.

In 14th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17). USENIX Association, Boston, MA. https://www.usenix.org/conference/

nsdi17/technical-sessions/presentation/zheng

A BIGMATRIX API DESIGN
In this Appendix section we discuss more implementation details

of different important BigMatrix operations. In addition to the de-

scription of the operations, we also include the discussion of the

trace and the cost. We call the information leakage to the adver-

sary the trace. In general, the trace contains any information that

an adversary can observe from the inputs, and also entering calls

(ECalls) and out calls (OCalls) made by an enclave. The cost is the
computation and communication cost of each operation. Since, in-

dividual operations are data independent and these costs will be

the same for every possible input and given only the trace as input,

we will be able to compute the cost. During our programming lan-

guage construction, we use these cost functions to find the optimal

execution plan.

Notations. We use A[i, j] to mean the element of matrix A at ith

row jth column. A[i, j : y] indicates y number of elements of ith

row from jth column to (j + y)th column. A(p,q) represents the

block at pth row and qit column. A(p :x,q:y) means a sub-matrix of

Session E5:  Privacy-Preserving Analytics CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1224

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://qdms.intel.com/dm/i.aspx/5A160770-FC47-47A0-BF8A-062540456F0A/PCN114074-00.pdf
https://qdms.intel.com/dm/i.aspx/5A160770-FC47-47A0-BF8A-062540456F0A/PCN114074-00.pdf
http://www.oreilly.com/data/free/2016-data-science-salary-survey.csp
http://www.oreilly.com/data/free/2016-data-science-salary-survey.csp
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/ohrimenko
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/ohrimenko
http://eprint.iacr.org/2016/1027
https://doi.org/10.1145/2508859.2516660
https://doi.org/10.1109/SP.2015.45
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zheng
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zheng


x row blocks and y column blocks of A starting at pth row block

and qth column block.

A.1 Matrix scalar operation
Let, A be a m × n matrix that is split into p × q blocks, ⊙ be a

binary operation, v be a value, and C be the output matrix of same

dimensions. So the scalar operation can be defined as C[i, j] =
A[i, j] ⊙ v . Using BigMatrix abstraction we perform,

C(α,β ) = A(α,β ) ⊙ v

for all the 1 ≤ α ≤ p and 1 ≤ β ≤ q to compute desired output.

The trace of this operation consists of size of the matrices, the

block size, the sequence of read block requests of A, and the se-

quence of write block request forC . After loading a block we access
all the elements once and we do not perform any data dependent

operations. As a result, this operation is data oblivious, i.e., the

adversary will not be able to distinguish two datasets from the

traces.

A.2 Matrix element-wise operation
Let,A and B be two matrices ofm ×n dimension, and ⊙ be a binary

operation such as multiplication, addition, subtraction, division,

bit-wise and, bit-wise or, etc.,C be the output of o operation applied

element-wise between A and B. Meaning, C[i, j] = A[i, j] ⊙ B[i, j]
for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, where A[i, j] means ith row and

jth column element in matrix A.
Now, let’s assume that A, B and C is too large to fit into the

enclave memory and A, B, C are split into p × q number of blocks.

Using BigMatrix abstraction we perform

C(α,β ) = A(α,β ) ⊙ B(α,β )

for all the 1 ≤ α ≤ p and 1 ≤ β ≤ q to compute desired output.

The trace for this operation consists of the size of matrices, the

block size, the sequence of read requests block-by-block for A, B,
and the sequence of write request for C . Once in memory each

element is touched only once. Furthermore, we are not performing

any data dependent operations.

A.3 Matrix multiplication
Let, A be am × p matrix, B be a p × n matrix, A be split into q × s
blocks, B be split into s × r blocks, and C be the output of AB. We

can compute C with

C(α,β ) =
s∑

σ=1
A(α,σ )B(σ ,β )

whereM(x,y) indicates (x ,y) block of matrixM .

The trace of this operation contains the size and block size of

A, B, and C , the sequence of read requests for matrix A, B, and the

sequence of write request for C . Similar to previous operations we

do not perform any data dependent operations so this operation is

data oblivious.

A.4 Matrix inverse
Performing matrix inverse is comparatively complicated than other

operations. Let A be a square matrix split into four blocks

A =
©«
E F

G H

ª®¬
where E and H are square matrices with dimensionsm ×m and

n×n, respectively. So, F andG arem×n and n×m dimension array.

The inverse can then be computed

A−1 =
©«
E−1 + E−1FS−1GE−1 −E−1FS−1

−S−1GE−1 S−1
ª®¬

where, S = H −GE−1F . Also, E and S must have non-zero determi-

nants. This format requires several multiplications and inverses. In

a naive implementation, we will need a large amount of temporary

memory. We can perform the following sequence of operations to

inverse a matrix with manageable memory overhead.

• We perform E−1 in place and our BigMatrix internal state is

as follows ©«
E−1 F

G H

ª®¬
• We multiply E−1 times block F and negate the result and re-

place F with the result. BigMatrix internal state is as follows

©«
E−1 −E−1F

G H

ª®¬
• Next, we multiply G with −E−1F and subtract from H and

replace H , leading to BigMatrix internal state of

©«
E−1 −E−1F

G H −GE−1F

ª®¬
Here, H −GE−1F is S .

• We compute S−1 and replace S , so we have

©«
E−1 −E−1F

G S−1
ª®¬

• Next, we compute GE−1 and replace G, so we have

©«
E−1 −E−1F

G S−1
ª®¬

• Now we compute S−1GE−1 by multiplying the last two re-

sults. We negate the result and replace G, so our BigMatrix

looks like ©«
E−1 −E−1F

−S−1GE−1 S−1
ª®¬
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• We multiply the off diagonal elements and add it to E−1

block, so that we have©«
E−1 + E−1FS−1GE−1 −E−1F

−S−1GE−1 S−1
ª®¬

• Finally we multiply −E−1F with S−1, replace −E−1F and we

get the intended result.

©«
E−1 + E−1FS−1GE−1 −E−1FS−1

−S−1GE−1 S−1
ª®¬

We can perform these operations with temporary memory equal

to the size of input BigMatrix. Now, we have built an iterative

algorithm to perform the inverse. It starts with block (0, 0) and

in each iteration it expands inverse by one block as described in

Algorithm 1. In this algorithm we need to inverse 1 × 1 blocks. To

achieve that we use a traditional LU decomposition technique with

a fixed number of rounds depending on the size of matrix not on

the data.

Algorithm 1 Matrix inverse by block iterative method.

Require: A = Square matrix split into blocks

A(0:1,0:1) = inverse(A(0:1,0:1))
for i = 1 to number of blocks in A do

e = (0 : i, 0 : i)
f = (0 : i, i : 1)
д = (i : 1, 0 : i)
h = (i : 1, i : 1)

Af = −1 ∗Ae ∗Af
Ah = Ah +Aд ∗Af
Ah = inverse(Ah )
Aд = Ah ∗Ae
Aд = −1 ∗Ah ∗Aд
Ae = Ae +Af ∗Aд
Af = −1 ∗Af ∗Ah

end for

The trace of the matrix inverse performed in blocks consists

of the trace of individual operations in sequences mentioned by

Algorithm 1. Similar to previous operations, this operation does

not perform any data dependent execution so it is data oblivious.

A.5 Matrix Transpose
Let, A be a matrix of dimension m × n, which is split into p × q
blocks, C be the transpose of A. C[i, j] = A[j, i] for all elements of

A. To compute C in our BigMatrix abstraction we compute

C(α,β ) = transpose(A(β,α ))
for 1 ≤ α ≤ p and 1 ≤ β ≤ q.

The trace of the transpose operation is the size of the matrix,

the block size, the sequence of read requests for blocks ofA, and the
sequence of block write requests for block of B. Furthermore, while

in memory each element value is touched only once and we do not

perform any data dependent operation. As a result, the transpose

operation is data oblivious.

A.6 Sort and Top k
We use Bitonic Sort [17] that performs exactly the same number of

comparisons for the same size dataset. However, the comparison

function in bitonic sort needs special attentions in order to make

it data oblivious. In particular, we used registers to determine the

comparison result of two rows and swap the values accordingly. To

make our framework more practical we allow users to mention a

list of column numbers and the direction of sort for each column.

To make the overall sort operation oblivious, for each row, we read

the full column and touch all the columns, compute a flag value and

swap two rows based on the flag. For top k results, we perform the

full sort and keep only the top k results based on the given criteria.

The trace of the sort function consists of the size of input matrix,

the block size, and the sequence of read and write request for the

matrix. We take input of the sorting direction as a row vector where

each element belongs to {0, 1,−1}, 0meaning no sorting direction, 1

meaning ascending order, and−1meaning descending order sorting.

As a result, there is no leakage through sorting order input.

A.7 Selection
Our framework also supports a number of most commonly used

relational algebra operators. However, these operations are not data

oblivious by nature. Therefore, we have to modify these operations

to make them data oblivious.

Let, A be a matrix of m × n dimensions, φ be a propositional

formula consisting one or more atoms,match be a function that

takes input a row of the matrix A, a propositional formula φ and

outputs 0 or 1 based on the result of the conditional predicate on

the row, and C be the output. In our framework C is defined as a

column vector (matrix ofm × 1 dimension) and computed as

C[i, 0] =matchφ (A[i, 0 : n])

for all 1 ≤ i ≤ m. In this way, the output size is always the same,

so no information leakage through output size. Next, we focus on

building thematch function in a data oblivious manner. First, we

argue that we have to leak the size and type of the operation in our

propositional formula. If we want to hide it then we always have

to execute a constant number of conditional operations in every

possible case, anything other than that would leak information

about the φ. Furthermore, φ can be arbitrarily large and complex.

So hiding φ for security will make the framework very inefficient.

On the other hand, we can easily hide the columns that are used

in φ. We simply touch all the values in input row in each match

execution.

The trace of the selection operation consists of the size of in-

put matrix, the block size, the sequence of read requests for input

matrix, and the matching expression size. Here we perform data

dependent operations but we do exactly same operations for the

same number of input expressions and input rows. We hide the

selection expression content by touching all the element of input

matrix row and evaluating the selection expression to find whether

current row matches or not. So we argue that our implementation

is data oblivious.
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A.8 Aggregation
In our framework, we support four aggregation commands, sum,
average, count, min, and max. Each of these aggregation operations
requires different types of processing. By definition sum, average,
count are oblivious since the number of operations does not depend

on the data in anyway. However, min and max depend on the data.

In a trivial implementation min of max computation between two

number reveals branch of the code that is executed by a processor.

As a result, the adversary can distinguish between two different

datasets. To remedy that we used techniques described in [46, 49].

Specifically, we load the values into a register (that is not observable

by the adversary), compute the condition that set a flag, based on

the flag we swap, and return value from one fixed register. In this

process the number of operation remains the same, and the same

path of the code is executed regardless of the input data.

The trace of our aggregation operation is the size of input matrix,

the block size, the number of aggregation operation, and the type

of aggregation operation.

A.9 Join
We only considered a simple join without any special optimizations.

We adopted [11] technique to perform join between two BigMatrix.

Similar to their constructs, we require users to supply the maxi-

mum number of matches in B with A, without this information the

implementation of join operation will become data dependent. Let,

A be matrix of dimensionm×n, B be matrix of dimension x×y, φ be

propositional formula consisting of atom,match be a function that

takes one row from A and another row from B, outputs 1 if rows
matches on given columns and 0 otherwise, and k be the number

of maximum rows in B that matches with any row of A. We use

Algorithm 2 to compute join. For simplicity and efficiency we are

considering only BigMatrix that have one column blocks. It makes

it easier to compute the matching condition obliviously. In case, if

input matrix is not in this format we can run reshape operation to

make it into this shape. Since we are considering only BigMatrix

with single column we will useAp to indicate pth block. The details

of this join algorithm is given in Algorithm 2.

B ADDITIONAL EXAMPLE : PAGERANK
PageRank is a popular algorithm to measure the relative impor-

tance of a node in a connected graph [47]. It was originally used to

measure the importance of hyperlinked web pages in Word Wide

Web. The simplified version of the algorithm can be expressed as

PR(u) =
∑
v ∈Bu

PR(v)
L(v)

where u,v are nodes in a connected graph, PR(v) is PageRank of

v , Bu is a set of nodes that links to u, and L(v) is number of links

from v . Finally, we iterate multiple times until the values converge.

Interestingly, we can express the computation in terms of basic

matrix operations using a technique called power method. Also,
to reduce the information leakage through iteration required to

converge, we run the update step a fixed number of times. In our

programming language, we can write the code as follows

Algorithm 2 Data oblivious join algorithm for BigMatrix

1: Require:A, B input BigMatrix, that has only one column block,

φ matching condition, k = maximum row matches from A to B
2: Output: C output BigMatrix.

3: for u = 1 to row_blocks(A) do
4: load_block Au
5: for i = 1 to rows(Au ) do
6: X = 2k dummy block array

7: t = K
8: for v = 1 to row_blocks(B) do
9: load_block Bv
10: for j = 1 to rows(Bv ) do
11: if match(Au [i, :],Bv [j, :],φ) then
12: X [t] = Au [i, :],Bv [j, :]
13: else
14: X [t] = dummy,dummy
15: end if
16: t = t + 1
17: if t >= 2k then
18: Sort X with bitonic sort such that dummy

blocks at the end.

19: end if
20: end for
21: end for
22: Write first k elements to C
23: end for
24: end for

M = load ( ' path / to / ad j a c ency_ma t r i x ' )

d = 0 . 8 / / damping f a c t o r

N = M. rows

v = rand (N , 1 )

v = v . / norm ( v , 1 )

M_hat = (M . ∗ d ) + ones (N , N) . ∗ ( 1 − d ) / N

f o r _ = 1 to 4 0 :

v = M_hat ∗ v

pub l i s h ( v )

The corresponding execution engine code is as follows. For sim-

plicity we are skipping the unset methods here.

M = load ( a d j a c en cy_ma t r i x _ i d )

d = a s s i g n ( 0 . 8 )

N = a s s i g n (M. rows )

v = rand (N , 1 )

t 1 = norm ( v , 1 )

v = s c a l a r ( ' / ' , v , t 1 )

t 2 = s c a l a r ( ' ∗ ' , M, d )

t 3 = sub ( d , 1 )

t 4 = d i v ( t3 , N)

t 5 = ones (N , N)
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t 6 = s c a l a r ( ' ∗ ' , t5 , t 4 )

M_hat = e lement \ _wise ( ' + ' , t2 , t 6 )

_ = loop ( 1 , 4 0 , 1 )

v = mu l t i p l y ( M_hat , v )

p u b l i s h ( v )

In this case, the leaked information to the adversary is the size

of M, the loop iteration count 40, the looped instruction count 1,

and the sequence of operations.

C PROTOCOL DESIGN DETAILS

Code agreement and loading phase. To facilitate the communi-

cation among multi-parties, we assume that the participants know

each others’ and also SGX server’s public key. This can be achieved

by participating in an already existing public key infrastructure.

In addition, we are assuming there exists a broadcast mechanism,

where any participants including the server can broadcast messages

to every other participant.

Let, p be the number of participants, Pi be the i
th

participant,

K
(i)
pub be the public key of participant i , K

(i)
pr i be the private key

of participant i , K
(s)
pub be the public key of the central server, K

(s)
pr i

be the private key of the central server, C be the code that all the

participants wants to execute, H (k,m) be an authenticated hash

(HMAC) function that creates MAC of a message m with key k ,
Siдn(Kpr iv ,m) be a signing function that generates fixed length

signature s of messagem with a private key of an asymmetric key

pair, andVeri f y(Kpub , s,m) be a verification algorithm that verifies

signature s of messagem with a public key of an asymmetric key

pair.

The sequence of operations that participant Pi performs in this

phase is the following:

• Generate a signature for the code C with a randomly gener-

ated nonce ri as follows,

σi =< si , ri >=< Siдn(K (i)
pr i ,C||ri ), ri >

• Broadcast σi to all other participants

• Next get all other participants signatures, i.e., get σj for
j = {1, ...,p} and j , i

• Verify by executing Veri f y(K (j)
pub , sj ,C||r j ) for all j except

i . If any of the signature fails then abort the protocol and

broadcast the abort message

At this stage all the participants have agreed on the same code

C. Now we are ready to start the SGX loading

• One of the participant uploads C and {σ1..σp } to the SGX

server

• The server verifies all the {σ1..σp } as previously
• Next, the server creates the enclave, i.e., loads the trusted

part of the code into SGX

• Generates the signature of the enclave from mrenclave reg-

ister call

• Inside the enclave generate asymmetric key pair

Kenclave
pub , Kenclave

pr i
• The server generates the following λi for all the participants
Pi and send to participants

λi =< Siдn(Kenclave
pub ,C),ESiд,ϕ(K (i)

pub ,K
enclave
pub | |Ki | |ri ), ri >

• The server also generates a random session key for this

execution Ks , which will be used for further computation in

this session

• Each participants gets λ that they decrypt with their private

key and get Ki

Input data and encryption key provisioning. Once direct key
establishment with SGX server is done, we are ready to send data

to the server.

• Now participant i generates a random symmetric key Ki
and encrypts the key with a key derived from nonce n from

previous step

• Participant i then encrypts the data with Ki and uploads to

the SGX server

Result distribution. Upon finishing the code execution the SGX

server will distribute the result, which is encrypted with recipient’s

public key Ki .
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