
Practical Secure Aggregation
for Privacy-Preserving Machine Learning

Keith Bonawitz

bonawitz@google.com

Google

1600 Amphitheatre Parkway

Mountain View, California 94043

Vladimir Ivanov

vlivan@google.com

Google

1600 Amphitheatre Parkway

Mountain View, California 94043

Ben Kreuter

benkreuter@google.com

Google

1600 Amphitheatre Parkway

Mountain View, California 94043

Antonio Marcedone
†

marcedone@cs.cornell.edu

Cornell Tech

2 West Loop Rd.

New York, NY 10044

H. Brendan McMahan

mcmahan@google.com

Google

1600 Amphitheatre Parkway

Mountain View, California 94043

Sarvar Patel

sarvar@google.com

Google

1600 Amphitheatre Parkway

Mountain View, California 94043

Daniel Ramage

dramage@google.com

Google

1600 Amphitheatre Parkway

Mountain View, California 94043

Aaron Segal

asegal@google.com

Google

1600 Amphitheatre Parkway

Mountain View, California 94043

Karn Seth

karn@google.com

Google

1600 Amphitheatre Parkway

Mountain View, California 94043

ABSTRACT
We design a novel, communication-efficient, failure-robust proto-

col for secure aggregation of high-dimensional data. Our protocol

allows a server to compute the sum of large, user-held data vec-

tors from mobile devices in a secure manner (i.e. without learning

each user’s individual contribution), and can be used, for example,

in a federated learning setting, to aggregate user-provided model

updates for a deep neural network. We prove the security of our

protocol in the honest-but-curious and active adversary settings,

and show that security is maintained even if an arbitrarily chosen

subset of users drop out at any time. We evaluate the efficiency

of our protocol and show, by complexity analysis and a concrete

implementation, that its runtime and communication overhead re-

main low even on large data sets and client pools. For 16-bit input

values, our protocol offers 1.73× communication expansion for 2
10

users and 2
20
-dimensional vectors, and 1.98× expansion for 2

14

users and 2
24
-dimensional vectors over sending data in the clear.

CCS CONCEPTS
• Security and privacy → Privacy-preserving protocols;

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’17, October 30-November 3, 2017, Dallas, TX, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00

https://doi.org/10.1145/3133956.3133982

KEYWORDS
privacy-preserving protocols, secure aggregation, machine learning,

federated learning

1 INTRODUCTION
Machine learningmodels trained on sensitive real-world data promise

improvements to everything from medical screening [46] to dis-

ease outbreak discovery [37]. And the widespread use of mobile

devices means even richer—and more sensitive—data is becoming

available [35].

However, large-scale collection of sensitive data entails risks. A

particularly high-profile example of the consequences of mishan-

dling sensitive data occurred in 1988, when the video rental history

of a nominee for the US Supreme Court was published without his

consent [4]. The law passed in response to that incident remains

relevant today, limiting how online video streaming services can

use their user data [42].

This work outlines an approach to advancing privacy-preserving

machine learning by leveraging secure multiparty computation

(MPC) to compute sums of model parameter updates from individ-

ual users’ devices in a secure manner. The problem of computing

a multiparty sum where no party reveals its update in the clear—

even to the aggregator—is referred to as Secure Aggregation. As
described in Section 2, the secure aggregation primitive can be used

to privately combine the outputs of local machine learning on user

devices, in order to update a global model. Training models in this

way offers tangible benefits—a user’s device can share an update

knowing that the service provider will only see that update after it

has been averaged with those of other users.

The secure aggregation problem has been a rich area of re-

search: different approaches include works based on generic secure

† Research performed during an internship at Google.

Session E5: Privacy-Preserving Analytics CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1175

https://doi.org/10.1145/3133956.3133982

multi-party computation protocols, works based on DC-nets, works

based on partially- or fully-homomorphic threshold encryption, and

works based on pairwise masking. We discuss these existing works

in more detail in Section 9, and compare them to our approach.

We are particularly focused on the setting of mobile devices,

where communication is extremely expensive, and dropouts are

common. Given these constraints, we would like our protocol to

incur no more than twice as much communication as sending the

data vector to be aggregated in the clear, and would also like the

protocol to be fully robust to users dropping at any point.We believe

that previous works do not address this mixture of constraints,

which is what motivates our work.

1.1 Our Results
We present a protocol for securely computing sums of vectors,

which has a constant number of rounds, low communication over-

head, robustness to failures, and which requires only one server

with limited trust. In our design the server has two roles: it routes

messages between the other parties, and it computes the final re-

sult. We present two variants of the protocol: one is more efficient

and can be proven secure against honest but curious adversaries,

in the plain model. The other guarantees privacy against active

adversaries (including an actively adversarial server), but requires

an extra round, and is proven secure in the random oracle model. In

both cases, we can show formally that the server only learns users’

inputs in aggregate, using a simulation-based proof as is standard

for MPC protocols. Both variants we present are practical and we

present benchmark results from our prototype implementation.

1.2 Organization
In Section 2 we describe the machine learning application that

motivates this work. In Section 3 we review the cryptographic

primitives we use in our protocol. We then proceed to give a high-

level overview of our protocol design in Section 4, followed by a

formal protocol description in Section 5. In Section 6 we prove se-

curity against honest-but-curious (passive) adversaries and include

a high-level discussion of privacy against active adversaries.In Sec-

tion 7, we give performance numbers based both on theoretical

analysis as well as on a prototype implementation. Finally, we dis-

cuss some issues surrounding practical deployments and future

work in Section 8 and conclude with a discussion of related work

in Section 9.

2 SECURE AGGREGATION FOR FEDERATED
LEARNING

Consider training a deep neural network to predict the next word

that a user will type as she composes a text message. Such models

are commonly used to to improve typing efficacy for a phone’s on-

screen keyboard [30]. A modeler may wish to train such a model

on all text messages across a large population of users. However,

text messages frequently contain sensitive information; users may

be reluctant to upload a copy of them to the modeler’s servers.

Instead, we consider training such a model in a Federated Learning
setting, wherein each user maintains a private database of her text

messages securely on her own mobile device, and a shared global

model is trained under the coordination of a central server based

upon highly processed, minimally scoped, ephemeral updates from

users [43, 50].

These updates are high-dimensional vectors based on informa-

tion from the user’s private database. Training a neural net is typi-

cally done by repeatedly iterating over these updates using a variant

of a mini-batch stochastic gradient descent rule [15, 29]. (See Ap-

pendix B for details.)

Although each update is ephemeral and contains no more (and

typically significantly less) information than the user’s private

database, a user might still be concerned about what information

remains. In some circumstances, it is possible to learn invididual

words that a user has typed by inspecting that user’s most recent

update. However, in the Federated Learning setting, the server

does not need to access any individual user’s update in order to

perform stochastic gradient descent; it requires only the element-

wise weighted averages of the update vectors, taken over a random

subset of users. Using a Secure Aggregation protocol to compute

these weighted averages
1
would ensure that the server may learn

only that one or more users in this randomly selected subset wrote

a given word, but not which users.

Federated Learning systems face several practical challenges.

Mobile devices have only sporadic access to power and network

connectivity, so the set of users participating in each update step

is unpredictable and the system must be robust to users dropping

out. Because the neural network may be parameterized by mil-

lions of values, updates may be large, representing a direct cost

to users on metered network plans. Mobile devices also generally

cannot establish direct communications channels with other mobile

devices (relying on a server or service provider to mediate such

communication) nor can they natively authenticate other mobile

devices.

Thus, Federated Learning motivates a need for a Secure Aggre-

gation protocol that:

(1) operates on high-dimensional vectors

(2) is highly communication efficient, even with a novel set of

users on each instantiation

(3) is robust to users dropping out

(4) provides the strongest possible security under the con-

straints of a server-mediated, unauthenticated network

model

3 CRYPTOGRAPHIC PRIMITIVES
In this section, we discuss the cryptographic primitives and assump-

tions needed for our construction.

3.1 Secret Sharing
We rely on Shamir’s t-out-of-n Secret Sharing [48], which allows a

user to split a secret s into n shares, such that any t shares can be

used to reconstruct s , but any set of at most t − 1 shares gives no

information about s .
The scheme is parameterized over a finite field F of size at least

l > 2
k
(where k is the security parameter of the scheme), e.g.

F = Zp for some large public prime p. We note that such a large

field size is needed because our scheme requires clients to secret

1
Computing a secure weighted average given a secure sum operation is straightfoward;

for detail, see Appendix B.

Session E5: Privacy-Preserving Analytics CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1176

Cloud-Hosted Mobile Intelligence Federated Learning Federated Learning with Secure Aggregation

Figure 1: Left: In the cloud-centric approach to machine intelligence, user devices interact with cloud-hosted models, generat-
ing logs that can be used as training examples. The logs frommany users are combined and used to improve the model, which
is then used to serve future user requests. Middle: In Federated Learning, machine intelligence models are shipped to users’
devices where they are both evaluated and trained locally. Summaries of improved models are shared with the server, where
they are aggregated into a new model and deployed to user devices. Right: When Secure Aggregation is added to Federated
Learning, the aggregation of model updates is logically performed by the virtual, incorruptible third party induced by the
secure multiparty communication, so that the cloud provider learns only the aggregated model update.

share their secret keys (whose length must be proportional to the

security parameter for the security proof to go through). We also

assume that integers 1, . . . ,n (which will be used to denote users

in the protocol) can be identified with distinct field elements in F.
Given these parameters, the scheme consists of two algorithms. The

sharing algorithm SS.share(s,t ,U)→ {(u,su)}u ∈U takes as input

a secret s , a setU of n field elements representing user IDs, and a

threshold t ≤ |U |; it produces a set of shares su , each of which is

associated with a different u ∈ U . The reconstruction algorithm

SS.recon({(u,su)}u ∈V ,t) → s takes as input the threshold t and
the shares corresponding to a subsetV ⊆ U such that |V |≥ t , and
outputs a field element s .

Correctness requires that ∀s ∈ F,∀t ,n with 1 ≤ t ≤ n, ∀U ⊆ F
where |U |= n, if {(u,su)}u ∈U ← SS.share(s,t ,U), V ⊆ U and

|V |≥ t , then SS.recon({(u,su)}u ∈V ,t) = s . Security requires that

∀s,s ′ ∈ F and anyV ⊆ U such that |V |< t :

{{(u,su)}u ∈U ← SS.share(s,t ,U) : {(u,su)}u ∈V } ≡

{{(u,su)}u ∈U ← SS.share(s ′,t ,U) : {(u,su)}u ∈V }

where “≡” denotes that the two distributions are identical.

3.2 Key Agreement
Key Agreement consists of a tuple of algorithms

(KA.param,KA.gen,KA.agree). The algorithm KA.param(k)→

pp produces some public parameters (over which our scheme will

be parameterized). KA.gen(pp) → (sSKu ,s
PK
u) allows any party u

to generate a private-public key pair. KA.agree(sSKu ,s
PK
v)→ su,v

allows any user u to combine their private key sSKu with the public

key sPKv for anyv (generated using the same pp), to obtain a private

shared key su,v between u and v .
The specific KeyAgreement schemewewill use is Diffie-Hellman

key agreement [19], composed with a hash function. More specifi-

cally, KA.param(k)→ (G′,д,q,H) samples group G′ of prime or-

derq, along with a generatorд, and a hash functionH2
;KA.gen(G′,

д,q,H)→ (x ,дx) samples a random x ← Zq as the secret key sSKu ,

and дx as the public key sPKu ; and KA.agree(xu ,д
xv

)→ su,v out-

puts su,v = H ((дxv)
xu

).

2
In practice, one can use SHA-256.

Correctness requires that, for any key pairs generated by users u
andv (usingKA.gen and the same parameters pp),KA.agree(sSKu ,

sPKv) = KA.agree(sSKv ,s
PK
u). For security, in the honest but curious

model, we want that for any adversary who is given two honestly

generated public keys sPKu and sPKv (but neither of the correspond-

ing secret keys sSKu or sSKv), the shared secret su,v computed from

those keys is indistinguishable from a uniformly random string.

This exactly mirrors the Decisional Diffie-Hellman (DDH) assump-

tion, which we recall below:

Definition 3.1 (Decisional Diffie-Hellman assumption). LetG(k)→

(G′,д,q,H) be an efficient algorithm which samples a group G′ of

order q with generator д, as well as a function H : {0,1}∗ → {0,1}k .

Consider the following probabilistic experiment, parameterized by

a PPT adversaryM , a bit b and a security parameter k .

DDH-Expb
G,M (k):

(1) (G′,д,q,H)← G(k)

(2) a ← Zq ;A← дa

(3) b ← Zq ;B ← дb

(4) if b = 1, s ← H (дab), else s
$

← {0,1}k

(5) M(G′,д,q,H ,A,B,s)→ b ′

(6) Output 1 if b = b ′, 0 o/w.

The advantage of the adversary is defined as

AdvDDH
G,M (k) := |Pr[DDH-Exp1

G,M (k) = 1]−

Pr[DDH-Exp0

G,M (k) = 1]|

We say that the Decisional Diffie-Hellman assumption holds for

G if for all PPT adversaries M, there exists a negligible function ϵ
such that AdvDDH

G,M (k) ≤ ϵ(k).

Note that, traditionally, the Diffie-Hellman assumption does not

directly involve a hash functionH (i.e. line step 4 is substituted with

“ifb = 1, s ← дab , else s
$

← G′”), and therefore to get from a random

element of the group G′ to a uniformly random string (which is

necessary to be used as the seed for a PRG, or to sample secret

keys for other primitives), one has to compose дab with a secure

randomness extractor (which composes well with this specific key

agreement operation). For simplicity, we choose to incorporate such

an extractor function H in the assumption.

Session E5: Privacy-Preserving Analytics CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1177

In order to prove security against active adversaries (Theorem

6.5), we need a somewhat stronger security guarantee for Key

Agreement, namely that an adversary who is given two honestly

generated public keys sPKu and sPKv , and also the ability to learn

KA.agree(sSKu ,s
PK

) and KA.agree(sSKv ,s
PK

) for any sPK s of its

choice (but different from sPKu and sPKv), still cannot distinguish

su,v from a random string. In order to get this stronger property,

we need to rely on a slight variant of the Oracle Diffie-Hellman

assumption (ODH) [2], which we call Two Oracle Diffie-Hellman

assumption (2ODH):

Definition 3.2 (Two Oracle Diffie-Hellman assumption (2ODH)).
Let G(k) → (G′,д,q,H) be an efficient algorithm which samples

a group G′ of order q with generator д, as well as a function

H : {0,1}∗ → {0,1}k . Consider the following probabilistic experi-

ment, parameterized by a PPT adversaryM , a bit b and a security

parameter k .

2ODH-Expb
G,M (k):

(1) (G′,д,q,H)← G(k)

(2) a ← Zq ;A← дa

(3) b ← Zq ;B ← дb

(4) if b = 1, s ← H (дab), else s
$

← {0,1}k

(5) MOa (·),Ob (·)
(G′,д,q,H ,A,B,s)→ b ′

(6) Output 1 if b = b ′, 0 o/w.

where Oa (X) returnsH (Xa
) on anyX ̸= B (and an error on input B)

and similarly Ob (X) returns H (Xb
) on any X ̸= A. The advantage

of the adversary is defined as

Adv2ODH
G,M (k) := |Pr[2ODH-Exp1

G,M (k) = 1]−

Pr[2ODH-Exp0

G,M (k) = 1]|

We say that the Two Oracle Diffie-Hellman assumption holds for

G if for all PPT adversaries M, there exists a negligible function ϵ
such that Adv2ODH

G,M (k) ≤ ϵ(k).

This assumption can be directly used to prove the security prop-

erty we need for Key Agreement: the two oracles Oa (·),Ob (·) for-

malize the ability of the adversaryM to learn KA.agree(sSKu ,s
PK

)

and KA.agree(sSKv ,s
PK

) for different sPK , and the negligible ad-

vantage of M in the above game corresponds to an inability to

distinguish between s = su,v ← H (дab), and s
$

← {0,1}k .

3.3 Authenticated Encryption
(Symmetric) Authenticated Encryption combines confidentiality

and integrity guarantees for messages exchanged between two

parties. It consists of a key generation algorithm that outputs a

private key
3
, an encryption algorithm AE.enc that takes as input

a key and a message and outputs a ciphertext, and a decryption

algorithm AE.dec that takes as input a ciphertext and a key and

outputs either the original plaintext, or a special error symbol ⊥.

For correctness, we require that for all keys c ∈ {0,1}k and all

messages x , AE.dec(c,AE.enc(c,x)) = x . For security, we require
indistinguishability under a chosen plaintext attack (IND-CPA) and

ciphertext integrity (IND-CTXT) as defined in [7]. Informally, the

3
Without loss of generality, we make the simplifying assumption that the key genera-

tion algorithm samples keys as uniformly random strings.

guarantee is that for any adversaryM that is given encryptions of

messages of its choice under a randomly sampled key c (where c is
unknown toM),M cannot distinguish between fresh encryptions

under c of two different messages, nor can M create new valid

ciphertexts (different from the ones it received) with respect to c
with better than negligible advantage.

3.4 Pseudorandom Generator
We require a secure Pseudorandom Generator [9, 54] PRG that

takes in a uniformly random seed of some fixed length, and whose

output space is [0,R)
m
(i.e. the input space for the protocol). Security

for a Pseudorandom Generator guarantees that its output on a

uniformly random seed is computationally indistinguishable from

a uniformly sampled element of the output space, as long as the

seed is hidden from the distinguisher.

3.5 Signature Scheme
The protocol relies on a standard UF-CMA secure signature scheme

(SIG.gen,SIG.sign,SIG.ver). The key generation algorithm

SIG.gen(k) → (dPK ,dSK) takes as input the security parameter

and outputs a secret key dSK and a public key dPK ; the signing
algorithm SIG.sign(dSK ,m)→ σ takes as input the secret key and

a message and outputs a signature σ ; the verification algorithm

SIG.ver(dPK ,m,σ)→ {0,1} takes as input a public key, a message

and a signature, and returns a bit indicating whether the signature

should be considered valid. For correctness, we require that ∀m,

Pr[(dPK ,dSK)←SIG.gen(k),σ ← SIG.sign(dSK ,m) :

SIG.ver(dPK ,m,σ) = 1] = 1

Security demands that no PPT adversary, given a fresh honestly

generated public key and access to an oracle producing signatures

on arbitrary messages, should be able to produce a valid signature

on a message on which the oracle was queried on with more than

negligible probability.

3.6 Public Key Infrastructure
To prevent the server from simulating an arbitrary number of clients

(in the active-adversary model), we require the support of a public

key infrastructure that allows clients to register identities, and sign

messages using their identity, such that other clients can verify this

signature, but cannot impersonate them. In this model, each party

u will register

(
u,dPKu

)
to a public bulletin board during the setup

phase. The bulletin board will only allow parties to register keys

for themselves, so it will not be possible for the attacking parties to

impersonate honest parties.

4 TECHNICAL INTUITION
We note that our protocol is quite similar to the work of Ács and

Castelluccia [3], and we give a detailed comparison between our

approaches in Section 9. As in their protocol, we divide the parties

into two classes: a single server S that aggregates inputs from n
client parties U . Each user

4 u ∈ U holds a private vector xu of

dimension m; for simplicity we assume that the elements of xu
and

∑
u ∈U xu are in ZR for some R. The goal of the protocol is to

4
We use the terms user and client interchangeably.

Session E5: Privacy-Preserving Analytics CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1178

compute

∑
u ∈U xu in a secure fashion: at a high level, we guarantee

that the server only learns a sum of the clients’ inputs containing

contributions from at least a large fraction of the users and that the

users learn nothing.

4.0.1 Masking with One-Time Pads. The first observation is that∑
u ∈U xu can be computed with perfect secrecy if xu is masked in

a particular way. Assume a total order on users, and suppose each

pair of users (u,v), u < v agree on some random vector su,v . If u
adds this to xu and v subtracts it from xv , then the mask will be

canceled when their vectors are added, but their actual inputs will

not be revealed. In other words, each user u computes:

yu = xu +

∑
v ∈U :u<v

su,v −
∑

v ∈U :u>v

sv,u (mod R)

and sends yu to the server, and the server computes:

z =

∑
u ∈U

yu

=

∑
u ∈U

*.
,
xu +

∑
v ∈U :u<v

su,v −
∑

v ∈U :u>v

sv,u
+/
-

=

∑
u ∈U

xu (mod R)

There are two shortcomings to this approach. The first is that

the users must exchange the random vectors su,v , which, if done
naively, would require quadratic communication overhead (|U |×|x |).
The second is that there is no tolerance for a party failing to com-

plete the protocol: if a user u drops out after exchanging vectors

with other users, but before submitting yu to the server, the vector

masks associated with u would not be canceled in the sum z.

4.0.2 Efficient Communication and Handling Dropped Users. We

notice that we can reduce the communication by having the parties

agree on common seeds for a pseudorandom generator (PRG) rather

than on the entire mask su,v . These shared seeds will be computed

by having the parties broadcast Diffie-Hellman public keys and

engaging in a key agreement.

One approach to handling dropped-out users would be to notify

the surviving users of the drop-out, and to have them each reply

with the common seed they computed with the dropped user. This

approach still has a problem: additional users may drop out in the

recovery phase before replying with the seeds, which would thus

require an additional recovery phase for the newly dropped users’

seeds to be reported, and so on, leading the number of rounds up

to at most the number of users.

We resolve this problem by using a threshold secret sharing

scheme and having each user send shares of their Diffie-Hellman

secret to all other users. This allows pairwise seeds to be recovered

even if additional parties drop out during the recovery, as long as

some minimum number of parties (equal to the threshold) remain

alive and respond with the shares of the dropped users’ keys.

This approach solves the problem of unbounded recovery rounds,

but still has an issue: there is a possibility that a user’s data might

accidentally be leaked to the server. Consider a scenario where a

user u is too slow in sending her yu to the server. The server as-

sumes that the user has dropped, and asks all other users to reveal

Generate DH keypairs <cu ,cu > and <su ,su >
User Server

Round 0:
Advertise Keys

Round 1:
Share Keys

Round 2:
Masked Input

Collection

Round 3:
Consistency

Checks

Send signed public keys <cu, su , σu>PK PK

Broadcast list of received public keys to all users in u1

Validate signatures, generate bu and compute su,v

Compute t-out-of-n secret shares for bu and su

Send encrypted shares of bu and su

Forward received encrypted shares
Compute masked input yu

Send yu

Wait for enough users u3⊆ u2

Send a list of at least t survived users: u3 ⊆ u2

Collect signatures

SK

PKSK

SK

Sign u3 and reply with a signature σu

PKSK

Round 4:
Unmasking

Send a list {v, σv}of survived users from u4 ⊆ u3

Compute x (the final aggregated value)
Reconstruct secrets

Abort if |u4| < t, validate signatures
PKSend shares of bu for alive users and su for dropped

Abort if |u3| < t
'

'

Wait for enough users u1⊆ u

Wait for enough users u2⊆ u1

Figure 2: High-level view of our protocol. Red,
underlined parts are required to guarantee security in
the active-adversary model (and not necessary in the
honest-but-curious one).

their shares of u’s secret key, in order to remove u’s uncancelled
masks from z. However, just after receiving these shares and com-

puting each of the su,v values, the server may receive the delayed

yu from u. The server is now able to remove all the masks from

yu , and learn xu in the clear, breaking security for u. Moreover, an

adversarial server in the active model can similarly learn xu simply

by lying about whether user u has dropped out.

4.0.3 Double-Masking to Protect Security. To resolve this new

security problem, we introduce a double-masking structure that

protects xu even when the server can reconstruct u’s masks.

First, each user u samples an additional random seed bu during

the same round as the generation of the su,v values. During the

secret sharing round, the user also generates and distributes shares

of bu to each of the other users. When generating yu , users also
add this secondary mask:

yu = xu + PRG (bu)

+

∑
v ∈U :u<v

PRG
(
su,v
)

−
∑

v ∈U :u>v

PRG
(
sv,u
)

(mod R)

During the recovery round, the server must make an explicit

choice with respect to each user u: from each surviving member

v , the server can request either a share of the common secret su,v
associated with u or a share of the bu for u; an honest user v will

never reveal both kinds of shares for the same user. After gathering

at least t shares of su,v for all dropped users and t shares of bu for

all surviving users, the server can subtract off the remaining masks

to reveal the sum.

4.0.4 Putting it all Together. We summarize our protocol in Fig-

ure 2 and its asymptotic costs in Figure 3. The computational cost

is quadratic for the users, and cubic for the server. As the size of the

data vector gets large, the communication and storage overhead for

Session E5: Privacy-Preserving Analytics CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1179

User Server5

computation O(n2
+mn) O(mn2

)

communication O(n +m) O(n2
+mn)

storage O(n +m) O(n2
+m)

Figure 3: Cost summary for the protocol.

each of the clients and the server using our protocol approaches a

multiplicative constant over sending the data in the clear.

5 A PRACTICAL SECURE AGGREGATION
PROTOCOL

The protocol is run (in a synchronous network) between a server

and a set of n users, and consists of four rounds. Each user u holds

as input a vector xu (of equal lengthm) consisting of elements from

ZR for some R. The server has no input, but can communicate with

the users through secure (private and authenticated) channels. At

any point, users can drop out of the protocol (in which case they

stop sending messages completely), and the server will be able to

produce a correct output as long as t of them survive until the

last round. To simplify the notation we assume that each user u
is assigned a unique “logical identity” (also denoted with u) in the

form of an integer between 1 and n, so that no two honest users

share the same index
6
.

A complete description is provided in Figure 4. We stress that, in

the figure, when we say that the server “collects messages from at
least t users”, we mean that the server receives the messages from

all users that have not dropped out/aborted in that round (recall

that we prove our results in the synchronous setting), and aborts

if the number of messages received is less than t . In a practical

implementation, the server would wait until a specified timeout

(considering all users who did not respond in time to have dropped

out), and abort itself if not enough messages are received before

such timeout.

To prove security in the active adversary model, we also assume

the existence of a Public Key Infrastructure, which for simplicity

we abstract away by assuming all clients receive as input (from a

trusted third party) public signing keys for all other clients.

Overall, the protocol is parameterized over a security parameter

k , which can be adjusted to bound the success probability of any

attacker. In all theorems, we implicitly assume that the number

of clients n is polynomially bounded in the security parameter.

Moreover, some of the primitives also require additional global

parameters.

We note that Figure 4 presents both variants of the protocol:

in the honest but curious case, since all parties are following the

protocol honestly, we can avoid the use of signatures and the need

for a PKI (which, most notably, allows us to avoid the Consisten-
cyCheck round entirely).

6 SECURITY ANALYSIS
In our security arguments, we will make use of the following tech-

nical lemma. It says that if users’ values have uniformly random

5
The server can reconstruct n secrets from aligned (t, n)-Shamir shares inO (t 2

+ nt)

by caching Lagrange coefficients; see section 7.2 for details.

6
These identities will be bound to the users’ keys by a PKI. We rely on this in the

active-adversary setting.

pairwise masks added to them, then the resulting values look uni-

formly random, conditioned on their sum being equal to the sum

of the users’ values. In other words, the pairwise masks hide all

information about users’ individual inputs, except for their sum.

Lemma 6.1. Fix n, m, R, U with |U |= n, and {xu }u ∈U where
∀u ∈ U ,xu ∈ ZmR . Then,

{{pu,v
$

← ZmR }u<v , pu,v := −pv,u∀u > v

: {xu +

∑
v ∈U\{u }

pu,v (mod R)}u ∈U }

≡

{{wu
$

← ZmR }u ∈U s.t.
∑
u ∈U

wu =

∑
u ∈U

xu (mod R)

: {wu }u ∈U }

where “≡” denotes that the distributions are identical.

We omit the proof, noting that it can be proved easily by induc-

tion on n.

6.1 Honest but Curious Security
Here, we argue that our protocol is a secure multiparty computation

in the honest but curious setting, regardless of how and when par-

ties abort. In particular, we prove that when executing the protocol

with threshold t , the joint view of the server and any set of less

than t (honest) users does not leak any information about the other

users’ inputs, besides what can be inferred from the output of the

computation. Before formally stating our result, we introduce some

notation.

We will consider executions of our secure aggregation protocol

where the underlying cryptographic primitives are instantiated

with security parameter k , a server S interacts with a set U of n
users (denoted with logical identities 1, . . . ,n) and the threshold is

set to t . In such executions, users might abort at any point during

the execution, and we denote withUi the subset of the users that

correctly sent their message to the server at round i − 1, such that

U ⊇ U1 ⊇ U2 ⊇ U3 ⊇ U4 ⊇ U5. For example, users inU2 \ U3

are exactly those that abort before sending themessage to the server

in Round 2, but after sending the message of Round 1. If Round

ConsistencyCheck has been omitted, defineU4 := U3.

Denote the input of each useru withxu , andwithxU ′ = {xu }u ∈U ′
the inputs of any subset of usersU ′ ⊆ U .

In such a protocol execution, the view of a party consists of its

internal state (including its input and randomness) and all messages

this party received from other parties (the messages sent by this

party do not need to be part of the view because they can be deter-

mined using the other elements of its view). Moreover, if the party

aborts, it stops receiving messages and the view is not extended

past the last message received.

Given any subset C ⊆ U ∪ {S } of the parties, let

REALU,t,k
C

(xU ,U1,U2,U3,U4,U5) be a random variable repre-

senting the combined views of all parties in C in the above protocol

execution, where the randomness is over the internal randomness

of all parties, and the randomness in the setup phase.

Our first theorem shows that the joint view of any subset of

honest users (excluding the server) can be simulated given only the

Session E5: Privacy-Preserving Analytics CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1180

Secure Aggregation Protocol

• Setup:
– All parties are given the security parameter k , the number of users n and a threshold value t , honestly generated pp ← KA.gen(k), parameters

m and R such that ZmR is the space from which inputs are sampled, and a field F to be used for secret sharing. All users also have a private

authenticated channel with the server.

– All users u receive their signing key dSKu from the trusted third party, together with verification keys dPKv bound to each user identity v .
• Round 0 (AdvertiseKeys):

User u :
– Generate key pairs (cPKu , cSKu)← KA.gen(pp), (sPKu , sSKu)← KA.gen(pp), and generate σu ← SIG.sign(dSKu , cPKu | |sPKu).

– Send (cPKu | |sPKu | |σu) to the server (through the private authenticated channel) and move to next round.

Server :
– Collect at least t messages from individual users in the previous round (denote with U1 this set of users). Otherwise, abort.

– Broadcast to all users in U1 the list {(v, cPKv , sPKv , σv)}v∈U1
and move to next round.

• Round 1 (ShareKeys):
User u :
– Receive the list {(v, cPKv , sPKv , σv)}v∈U1

broadcasted by the server. Assert that |U1 | ≥ t , that all the public key pairs are different, and that

∀v ∈ U1, SIG.ver(dPKv , cPKv | |sPKv , σu) = 1.

– Sample a random element bu ← F (to be used as a seed for a PRG).
– Generate t -out-of- |U1 | shares of sSKu : {(v, sSKu,v)}v∈U1

← SS.share(sSKu , t, U1)

– Generate t -out-of- |U1 | shares of bu : {(v, bu,v)}v∈U1
← SS.share(bu , t, U1)

– For each other user v ∈ U1 \ {u }, compute eu,v ← AE.enc(KA.agree(cSKu , cPKv), u | |v | |sSKu,v | |bu,v)

– If any of the above operations (assertion, signature verification, key agreement, encryption) fails, abort.

– Send all the ciphertexts eu,v to the server (each implicitly containing addressing information u,v as metadata).

– Store all messages received and values generated in this round, and move to the next round.

Server :
– Collect lists of ciphertexts from at least t users (denote with U2 ⊆ U1 this set of users).

– Sends to each user u ∈ U2 all ciphertexts encrypted for it: {eu,v }v∈U2
and move to the next round.

• Round 2 (MaskedInputCollection):
User u :
– Receive (and store) from the server the list of ciphertexts {eu,v }v∈U2

(and infer the set U2). If the list is of size < t , abort.
– For each other user v ∈ U2 \ {u }, compute su,v ← KA.agree(sSKu , sPKv) and expand this value using a PRG into a random vector

pu,v = ∆u,v · PRG(su,v), where ∆u,v = 1 when u > v , and ∆u,v = −1 when u < v (note that pu,v + pv,u = 0 ∀u ̸= v). Additionally, define
pu,u = 0.

– Compute the user’s own private mask vector pu = PRG(bu). Then, Compute the masked input vector yu ← xu + pu +

∑
v∈U2

pu,v (mod R)

– If any of the above operations (key agreement, PRG) fails, abort. Otherwise, Send yu to the server and move to the next round.

Server :
– Collect yu from at least t users (denote with U3 ⊆ U2 this set of users). Send to each user in U3 the list U3.

• Round 3 (ConsistencyCheck):
User u :
– Receive from the server a list U3 ⊆ U2 consisting of at least t users (including itself). If U3 is smaller than t , abort.
– Send to the server σ ′u ← SIG.sign(dSKu , U3).

Server :
– Collect σ ′u from at least t users (denote with U4 ⊆ U3 this set of users). Send to each user in U4 the set {v, σ ′v }v∈U4

.

• Round 4 (Unmasking):
User u :
– Receive from the server a list {v, σ ′v }v∈U4

. Verify that U4 ⊆ U3, that |U4 | ≥ t and that SIG.ver(dPK , U3, σ ′v) = 1 for all v ∈ U4 (otherwise

abort).

– For each other user v in U2 \ {u }, decrypt the ciphertext v ′ | |u′ | |sSKv,u | |bv,u ← AE.dec(KA.agree(cSKu , cPKv), ev,u) received in theMasked-
InputCollection round and assert that u = u′ ∧ v = v ′.

– If any of the decryption operations fail (in particular, the ciphertext does not correctly authenticate), abort.

– Send a list of shares to the server, which consists of sSKv,u for users v ∈ U2 \ U3 and bv,u for users in v ∈ U3.

Server (generating the output):
– Collect responses from at least t users (denote with U5 this set of users).

– For each user in u ∈ U2 \ U3, reconstruct sSKu ← SS.recon({sSKu,v }v∈U5
, t) and use it (together with the public keys received in the

AdvertiseKeys round) to recompute pv,u for all v ∈ U3 using the PRG.

– For each user u ∈ U3, reconstruct bu ← SS.recon({bu,v }v∈U5
, t) and then recompute pu using the PRG.

– Compute and output z =

∑
u∈U3

xu as

∑
u∈U3

xu =

∑
u∈U3

yu −
∑
u∈U3

pu +

∑
u∈U3,v∈U2\U3

pv,u

Figure 4: Detailed description of the Secure Aggregation protocol. Red, underlined parts are required to guarantee security in
the active-adversary model (and not necessary in the honest-but-curious one).

Session E5: Privacy-Preserving Analytics CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1181

knowledge of the inputs of those users. Intuitively, this means that

those users learn “nothing more” than their own inputs.

Theorem 6.2 (Honest But Curious Security, against clients

only). There exists a PPT simulator SIM such that for all k ,t ,U
with t ≤ |U |,xU ,U1,U2,U3,U4,U5 and C such that C ⊆ U ,
U ⊇ U1 ⊇ U2 ⊇ U3 ⊇ U4 ⊇ U5, the output of SIM is perfectly
indistinguishable from the output of REALU,t,k

C
:

REALU,t,k
C

(xU ,U1,U2,U3,U4,U5)

≡

SIMU,t,k
C

(xC ,U1,U2,U3,U4,U5)

Proof. Note that, since the view of the server is omitted, the

joint view of the parties in C does not depend (in an information the-

oretic sense) on the inputs of the parties not in C. The simulator can

therefore produce a perfect simulation by running the honest but

curious users on their true inputs, and all other users on a dummy

input (for example, a vector of 0s), and outputting the simulated

view of the users in C. In more detail, the only value sent by the

honest parties which depend on their input isyu (sent to the server

in round MaskedInputCollection). One can easily note that the

response sent by the server to the users in round MaskedInput-
Collection just contains a list of user identities which depends

on which users responded on the previous round, but not on the

specific yu values of the responses. This means that the simula-

tor can use dummy values for the inputs of all honest parties not

in C, and the joint view of users in C will be identical to that in

REALU,t,k
. □

In our next theorem, we consider security against an honest-

but-curious server, who can additionally combine knowledge with

some honest-but-curious clients. We show that any such group

of honest-but-curious parties can be simulated given the inputs

of the clients in that group, and only the sum of the values of the

remaining clients. Intuitively, this means that those clients and

the server learn “nothing more” than their own inputs, and the

sum of the inputs of the other clients. Additionally, if too many

clients abort before Round Unmasking, then we show that we

can simulate the view of the honest-but-curious parties given no
information about the remaining clients’ values. Thus, in this case,

the honest-but-curious parties learn nothing about the remaining

clients’ values.

Importantly, the view to be simulated must contain fewer than t
honest-but-curious clients, or else we cannot guarantee security.

Theorem 6.3 (Honest But Curious Security, with curi-

ous server). There exists a PPT simulator SIM such that for all
t ,U ,xU ,U1,U2,U3,U4, and C such that C ⊆ U∪{S }, |C\{S }|< t ,
U ⊇ U1 ⊇ U2 ⊇ U3 ⊇ U4 ⊇ U5, the output of SIM is computa-
tionally indistinguishable from the output of REALU,t,k

C
:

REALU,t,k
C

(xU ,U1,U2,U3,U4,U5)

≈cSIM
U,t,k
C

(xC ,z,U1,U2,U3,U4,U5)

where

z =




∑
u ∈U3\C xu if |U3 |≥ t

⊥ otherwise.

Proof. We prove the theorem by a standard hybrid argument.

We will define a simulator SIM through a series of (polynomially

many) subsequent modifications to the random variable REAL, so
that any two subsequent random variables are computationally

indistinguishable.

Hyb
0
This random variable is distributed exactly as REAL,

the joint view of the parties C in a real execution of the

protocol.

Hyb
1
In this hybrid, we change the behavior of simulated

honest parties in the setU2 \ C, so that instead of using

KA.agree(cSKu ,c
PK
v) to encrypt and decrypt messages to

other usersv in the same set, they use a uniformly random

encryption key cu,v chosen by the simulator. The Deci-

sional Diffie-Hellman assumption (as recalled in Definition

3.1) guarantees that this hybrid is indistinguishable from

the previous one.

Hyb
2
In this hybrid, we substitute all ciphertexts encrypted

by honest parties in the setU2 \C and sent to other honest

parties with encryptions of 0 (padded to the appropriate

length) instead of shares of sSKu and bu . However, the hon-
est clients in that set continue to respond with the correct

shares of sSKu and bu in Round Unmasking. Since only
the contents of the ciphertexts have changed, IND-CPA

security of the encryption scheme guarantees that this

hybrid is indistinguishable from the previous one.

Hyb
3
Define:

U∗ =




U2 \ C if z = ⊥

U2 \ U3 \ C otherwise.

This hybrid is distributed exactly as the previous one, but

here we substitute all shares of bu generated by parties

u ∈ U∗ and given to the corrupted parties in Round

ShareKeys with shares of 0 (using a different sharing of

0 for every u ∈ U∗). Note that, in this hybrid and the pre-

vious one, the adversary does not receive any additional

shares of bu for users u in the setU∗ in Round Unmask-
ing, either because the honest clients do not reveal shares

of bu for such u, or because all honest clients abort (when
|U3 |< t , which happens exactly when z = ⊥). Thus,MC ’s
joint view contains only |C|< t shares of each bu . The
properties of Shamir’s secret sharing thus guarantee that

the distribution of any |C| shares of 0 is identical to the

distribution of an equivalent number of shares of any given

secret bu , making this hybrid identically distributed to the

previous one.

Hyb
4
In this hybrid, for all parties u ∈ U∗, instead of com-

puting pu ← PRG(bu), we set it to be a uniformly random

vector (of the appropriate size).

Note that, in the previous hybrid, since bu is chosen

uniformly at random and its shares given to the adversary

are substituted with shares of 0, the output of the random

variable does not depend on the seed of the PRG except

through the PRG’s output. Therefore, the only change in

this hybrid boils down to substituting the output of a PRG
(on a randomly generated seed otherwise independent from

the joint view of parties in C) with a uniformly random

Session E5: Privacy-Preserving Analytics CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1182

value. Therefore, leveraging the security of the PRG, we
can argue that this hybrid is indistinguishable from the

previous one.

Hyb
5
For all parties u ∈ U∗, in Round MaskedInputCol-

lection, instead of sending:

yu ← xu + pu +

∑
v ∈U2

pu,v

we send:

yu ← pu +

∑
v ∈U2

pu,v

Since pu was changed in the previous hybrid to be uni-

formly random and independent of any other values,

xu + pu is also uniformly random, and so this hybrid and

the previous hybrid are identically distributed. Further, this

hybrid and all subsequent hybrids do not depend on the

values xu for u ∈ U∗.
Note: If z = ⊥, then we can ignore the further hybrids,

and let SIM be as described in Hyb
5
, since SIM can already

simulate REAL without knowing xu for any u /∈ C. There-
fore in the following hybrids we assume z ̸= ⊥.

Hyb
6

This random variable is distributed exactly as the previ-

ous one, but here we substitute all shares of sSKu generated

by parties u ∈ U3 \ C and given to the corrupted parties

in Round ShareKeys with shares of 0 (using a different

sharing of 0 for every u ∈ U3 \ C). Following an analogous

argument to that forHyb
3
, the properties of Shamir’s secret

sharing guarantee that this hybrid is identically distributed

to the previous one.

Hyb
7
We fix a specific user u ′ ∈ U3 \ C. For this user,

and each other user u ∈ U3 \ C, in order to compute

the value yu sent to the server, we substitute the joint

noise key (which would be computed by u ′ and u as

su′,u = su,u′ ← KA.agree(sSKu′ ,s
PK
u)) with a uniformly

random value (which will used by both parties as a PRG
seed).

In more detail, for each user u ∈ U3 \ C \ {u
′}, a value

s ′u′,u is sampled uniformly at random and, instead of send-

ing

yu ← xu + pu +

∑
v ∈U2

pu,v

SIM sends

y′u ← xu + pu +

∑
v ∈U2\{u′ }

pu,v + ∆u,u′ · PRG(s ′u′,u)

and accordingly

y′u′ ← xu′ + pu′ +

∑
v ∈U2

∆u′,v · PRG(s ′u′,v)

where ∆u,v = 1 when u > v and ∆u,v = −1 when u < v .
It is easy to see that the Decisional Diffie-Hellman As-

sumption (Definition 3.1) guarantees that this hybrid is

indistinguishable from the previous one
7
.

7
It is important to note here that, in the previous hybrids, we removed all shares of

sSKu for u ∈ U3 \ C from the joint view of parties in C. Without doing so, we could

not reduce to the security of DH Key Agreement.

Hyb
8
In this hybrid, for the same party u ′ chosen in the pre-

vious hybrid and all other parties v ∈ U3 \ C, instead

of computing pu′,v ← ∆u′,v · PRG(s ′u′,v), we compute it

using fresh randomness ru′,v (of the appropriate size) as

pu′,v ← ∆u′,v · ru′,v .
Note that, in the previous hybrid, since s ′u′,v is chosen

uniformly at random (and independently from the Diffie-

Hellman keys), the output of the random variable does not

depend on the seed of the PRG except through the PRG’s
output. Therefore, the only change in this hybrid boils

down to substituting the output of a PRG (on an randomly

generated seed otherwise independent from the joint view

of parties in C) with a uniformly random value. Therefore,

leveraging the security of the PRG, we can argue that this

hybrid is indistinguishable from the previous one.

Hyb
9
In this hybrid, for all users u ∈ U3 \ C, in round

MaskedInputCollection instead of sending:

yu ← xu + pu +

∑
v ∈U2

pu,v

= xu + pu +

∑
v ∈U3\C

pu,v +

∑
v ∈U2\U3\C

pu,v

we send:

yu ← wu + pu +

∑
v ∈U2\U3\C

pu,v

Where {wu }u ∈U3\C are uniformly random, subject to∑
U3\C wu =

∑
U3\C xu = z. Invoking Lemma 6.1 with

n = |U3 \ C|, we have that this hybrid is identically dis-

tributed to the previous one. Moreover, note that to sample

from the random variable described by this hybrid, knowl-

edge of the individual xu for u ∈ U3 \ C is not needed, and

their sum z is sufficient.

We can thus define a PPT simulator SIM that samples from the distri-

bution described in the last hybrid. The argument above proves that

the output of the simulator is computationally indistinguishable

from the output of REAL, completing the proof. □

6.2 Privacy against Active Adversaries
In this section we discuss our argument for security against active

adversaries (detailed proofs can be found the in full version of this

paper). By active adversaries, we mean parties (clients or the server)

that deviate from the protocol, sending incorrect and/or arbitrarily

chosen messages to honest users, aborting, omitting messages, and

sharing their entire view of the protocol with each other, and also

with the server (if the server is also an active adversary).

We note that we only show input privacy for honest users: it is

much harder to additionally guarantee correctness and availability
for the protocol when some users are actively adversarial. Such

users can distort the output of the protocol by setting their input val-

ues xu to be out of range
8
, by sending inconsistent Shamir shares to

other users in Round ShareKeys, or by reporting incorrect shares

8
Typically, each element of xu is expected to be from a range [0, RU) ⊂ [0, R),

such that the sum of all xu is in [0, R). However, an actively adversarial user could

choose xu outside the expected range, i.e. on [RU , R), allowing the adversarial user

disproportionate impact on protocol’s result, thus undermining correctness.

Session E5: Privacy-Preserving Analytics CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1183

to the server in Round Unmasking. Making such deviations effi-

cient to detect and possibly recover from is left to future work.

We note some key differences between the argument for honest-

but-curious security, and the argument for privacy against active

adversaries.

The first key difference is that, for the proof against active adver-

saries, we assume that there exists a public-key infrastructure (PKI),

which guarantees to users that messages they receive came from

other users (and not the server). Without this assumption, the server

can perform a Sybil attack on the users in Round ShareKeys, by
simulating for a specific user u all other users v in the protocol and

thus receiving all u’s key shares and recovering that users’ input.

Alternatively, we can require the server to act honestly in its first
message (in Round ShareKeys). Specifically, the server must hon-

estly forward the Diffie-Hellman public keys it receives to all other

users, allowing them to set up pairwise private and authenticated

channels amongst themselves.

However, if we assume a PKI, then we observe that the server’s

power in the remainder of the protocol is reduced to lying to users

about which other users have dropped out: since all user-to-user

messages (sent in round ShareKeys) are authenticated through an

authenticated encryption scheme, the server cannot add, modify

or substitute messages, but rather, can only fail to deliver them.

Note, importantly, that the server can try to give a different view

to each user of which other users have dropped out of the protocol.

In the worst case, this could allow the server to learn a different

set of shares from each user in Round Unmasking, allowing it to

potentially reconstruct more secrets than it should be allowed to.

The ConsistencyCheck round is included in the protocol to deal

with this issue. The inclusion of the ConsistencyCheck round is

the second key difference with the honest-but-curious proof.

The final key difference is that we need the proof to be in the

random oracle (RO) model. To see why, notice that honestly acting

users are essentially “commited” to their secrets and input by the

end of the MaskedInputCollection round. However, the server

can adaptively choose which users drop after theMaskedInput-
Collection round. This causes problems for a simulation proof,

because the simulator doesn’t know honest users’ real inputs, and

must use dummy information in the earlier rounds, thus “commit-

ting” itself to wrong values that are potentially easily detectable.

The random oracle adds a trapdoor for the simulator to equivo-

cate, so that even if it commits to dummy values in early rounds,

it can reprogram the random oracle to make the dummy values

indistinguishable from honest users’ values. A full proof of security

appears in the full version of this paper.

6.3 Interpretation of Results
We summarize our system for the different security models we

consider in Figure 5.

6.3.1 Security against only clients. In each of Theorems 6.2 and

6.4, we see that the joint view of any subset of clients, honest or

adversarial, can be simulated given no information about the values

of the remaining clients. This means, no matter how we set our t
parameter, clients on their own learn nothing about other clients.

Theorem 6.4 (Privacy against actively adversarial users,

with honest server). There exists a PPT simulator SIM such that

Threat model Minimum

threshold

Minimum

inputs in sum

Client-only adversary 1 t
Server-only adversary ⌊ n

2
⌋ + 1 t

Clients-Server collusion ⌊ 2n
3
⌋ + 1 t − nC

Figure 5: Parameterization for different threatmodels. “Min-
imum threshold” denotes the minimum value of t required
for security in the given threat model. “Minimum inputs in
the sum” denotes a lower bound on the number of users’ val-
ues that are included in the sum learned by the server. n de-
notes the total number of users, while nC is the number of
corrupt users.

for all PPT adversariesMC , all k ,t ,U ,xU\C ,C ⊆ U , the output of
SIM is perfectly indistinguishable from the output of REALU,t,k

C
:

REALU,t,k
C

(MC ,xU\C) ≡ SIMU,t,k
C

(MC)

Proof. See full version of this paper. □

6.3.2 Security against only the server. From Theorems 6.3 and

6.5, we see that if we set nC = 0, that is, there are no clients who

cheat or collaborate with the server, then setting t ≥ ⌊ n
2
⌋ + 1

guarantees that the sum learned by the server contains the values

of at least t > n
2
clients, and the protocol can deal with up to ⌈n

2
⌉−1

dropouts.

Theorem 6.5 (Privacy against active adversaries, includ-

ing the server). There exists a PPT simulator SIM such that for all
k ,t ,U ,C ⊆ U ∪ {S } and xU\C , letting n = |U | and nC = |C ∩ U |,
if 2t > n + nC , then the output of SIM is computationally indistin-
guishable from the output of REALU,t,k :

REALU,t,k
C

(MC ,xU\C) ≈c SIM
U,t,k,Idealδ

{xu }u∈U\C
C

(MC)

where δ = t − nC .

Proof. See full version of this paper. □

6.3.3 Security against a server colluding with clients. From The-

orems 6.3 and 6.5, we see that we can allow a server (honest or

adversarial) to collaborate with up to nC = ⌈n
3
⌉ − 1 users (honest or

adversarial), if we set t ≥ ⌊ 2n
3
⌋ + 1, at the same time guaranteeing

that the sum learned by the server contains the values of at least
n
3

clients. Additionally, the protocol is robust to up to ⌈n
3
⌉ − 1 users

dropping out.

For all the results above, we reiterate that if we want security

against servers that are allowed to actively deviate from the protocol

(whether or not they collaborate with clients), we must use include

the protocol features highlighted in Figure 4.

7 EVALUATION
We summarize the protocol’s performance in Table 3. All calcula-

tions below assume a single server and n users, where each user

holds a data vector of sizem. We evaluate the honest-but-curious

version of the protocol, and ignore the cost of the PKI, all signatures,

and Round ConsistencyCheck. We note that including their cost

Session E5: Privacy-Preserving Analytics CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1184

does not change any of the asymptotics, and only slightly increases

the computation and communication costs.

7.1 Performance Analysis of Client
Computation cost: O(n2

+mn). Each user u’s computation cost

can be broken up as (1) Performing the 2n key agreements, which

take O(n) time, (2) Creating t-out-of-n Shamir secret shares of sSKu
and bu , which is O(n2

) and (3) Generating values pu and pu,v for

every other user v for each entry in the input vector by stretching

one PRG seed each, which takes O(mn) time in total. Overall, each

user’s computation is O(n2
+mn).

Communication cost: O(n +m). The communication costs of

each user can be broken up into 4 parts: (1) Exchanging keys with

each other user by sending 2 and receiving 2(n − 1) public keys, (2)

Sending 2(n − 1) and receiving 2(n − 1) encrypted secret shares, (3)

Sending a masked data vector of sizem
⌈
log

2
R
⌉
to the server, and

(4) Sending the server n secret shares, for an overall communication

cost of 2naK + (5n − 4)aS + m
⌈
log

2
R
⌉
, where aK and aS are the

number of bits in a key exchange public key and the number of bits

in a secret share, respectively. Overall, the user’s communication

complexity is O(n +m). Assuming inputs for each user are on the

same range [0,RU − 1], we require R = n(RU − 1) + 1 to avoid

overflow. A user could transmit its raw data usingm
⌈
log

2
RU
⌉
bits.

Taking aK = aS = 256 bits implies a communication expansion

factor of
256(7n−4)+m⌈log

2
R⌉

m⌈log
2
RU ⌉

. For RU = 2
16

(i.e. 16-bit input values),

m = 2
20

elements, and n = 2
10

users, the expansion factor is 1.73×;

for n = 2
14

users, it is 3.62×. Form = 2
24

elements and n = 2
14

users, the expansion factor is 1.98×.

Storage cost:O(n +m). The user must store the keys and secret-

shares sent by each other user, which areO(n) in total, and the data

vector (which it can mask in-place), which has size O(m).

7.2 Performance Analysis of Server
Computation cost:O(mn2

). The server’s computation cost can be

broken down as (1) Reconstructing n t-out-of-n Shamir secrets (one

for each user), which takes total time O(n2
), and (2) generating and

removing the appropriate pu,v and pu values from the sum of the

yu values received, which takes time O(mn2
) in the worst case.

We note that reconstructing n secrets in the Shamir scheme

takes O(n3
) time in the general case: each secret reconstruction

SS.recon({(u,su)}u ∈U ′ ,t)→ s amounts to interpolating a polyno-

mial L over the points encoded by the shares and then evaluating

at 0, which can be accomplished via Lagrange polynomials:

s = L(0) =

∑
u ∈U ′

su
∏

v ∈U ′\{u }

v

v − u
(mod p)

Each reconstruction requires O(n2
) computation and we must

perform n reconstructions, implying O(n3
) total time. However,

in our setting, we can perform all of the reconstructions in O(n2
)

time by observing that all of our secrets will be reconstructed from

identically-indexed sets of secret shares – that is,U ′ is fixed across

all secrets, because in round Unmasking, each user that is still

alive sends a share of every secret that needs to be reconstructed.

Therefore, we can precompute the Lagrange basis polynomials

ℓu =

∏
v ∈U ′\{u }

v

v − u
(mod p)

in O(n2
) time and O(n) space, then reconstruct each of n secrets

in O(n) time as L(0) =

∑
u ∈U ′ suℓu (mod p) resulting in a total

computational cost of O(n2
) to reconstruct all the secrets.

We also note that the O(mn2
) term can be broken into O(m(n −

d)+md(n−d)), whered is the number of users that dropped from the

protocol. In practice, d may be significantly smaller than n, which
would also reduce the server’s computation cost.

Communication cost:O(n2
+mn). The server’s communication

cost is dominated by its mediation of all pairwise communications

between users, which is O(n2
), and also for receiving masked data

vectors from each user, which is O(mn) in total.

Storage cost:O(n2
+m). The server must store t shares for each

user, which is O(n2
) in total, along with an m-element buffer in

which to maintain a running sum of yu as they arrive.

7.3 Prototype Performance
In order to measure performance, we implemented a prototype in

Java, with the following cryptographic primitives:

• For Key Agreement, we used Elliptic-Curve Diffie-Hellman

over the NIST P-256 curve, composed with a SHA-256 hash.

• For Secret Sharing, we used standard t-out-of-n Shamir

Sharing.

• For Authenticated Encryption, we used AES-GCM with

128-bit keys.

• For the Pseudorandom Number Generator, we used AES

in counter mode.

We assume an honest-but-curious setting, and thus omitted the

portions of Figure 4 special to active clients from our simulations.

We note that these omissions would not change the overall shape

of our results in practice, since, as we discuss below, the bulk of the

costs involve masking, storing and sending the large data vector.

Additionally, we assume that when clients drop out of the pro-

tocol, that they drop after sending their shares to all other clients,

but before sending their masked input to the server. This is essen-

tially the “worst case” dropout, since all other clients have already

incorporated the dropped clients’ masks, and the server must per-

form an expensive recovery computation to remove them. We also

assumed that client’s data vectors had entries such that at most

3 bytes are required to store the sum of up to all clients’ values

without overflow.

We ran single-threaded simulations on a Linux workstation with

an Intel Xeon CPU E5-1650 v3 (3.50 GHz), with 32 GB of RAM.Wall-

clock running times and communication costs for clients are plotted

in Figure 6. Wall clock running times for the server are plotted in

Figure 7, with different lines representing different percentages of

clients dropping out. Figure 8 shows wall-clock times per round

for both the client and the server. We omit data transfer plots for

the server, as they are essentially identical to those for the client,

except higher by a factor of n. This is because the incoming data

of the server is exactly the total outgoing data of all clients, and

vice versa. We also do not plot bandwidth numbers for different

Session E5: Privacy-Preserving Analytics CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1185

(a) Wall-clock running time per client, as the number of clients in-
creases. The data vector size is fixed to 100K entries.

(b) Wall-clock running time per client, as the size of the data vector
increases. The number of clients is fixed to 500.

(c) Total data transfer per client, as the number of clients increases.
Different lines show different data vector sizes. Assumes no dropouts.

(d) Total data expansion factor per client, as compared to sending the
raw data vector to the server. Different lines represent different values
of n. Assumes no dropouts.

Figure 6: Client Running Time and Data Transfer Costs. All wall-clock running times are for a single-threaded client imple-
mented in Java, and ignore communication latency. Plotted points represent averages over 10 end-to-end iterations, and error
bars represent 95% confidence intervals. (Error bars are omitted where measured standard deviation was less than 1%).

numbers of dropouts, as the number of dropouts does not have a

significant impact on this metric.

In our simulations, for both the client and the server, almost all

of the computation cost comes from expanding the various PRG

seeds to mask the data vector. Compared to this, the computational

costs of key agreement, secret sharing and reconstruction, and

encrypting and decryptingmessages between clients, are essentially

negligible, especially for large choices of n and data vector size. This

suggests that using an optimized PRG implementation would yield

a significant running-time improvement over our prototype.

As seen in Figures 6a and 6b, the running time of each client

increases linearly with both the total number of clients and the

number of data vector entries, but does not change significantly

when more clients drop out. In Figure 6c, the communication expan-

sion factor for each client increases as the total number of clients

increases, but this increase is relatively small compared to the im-

pact of increasing the size of the data vector. This is also reflected

in Figure 6d, where the communication expansion factor for each

client increases as the total number of clients increases, but falls

quickly as the size of the data vector increases. This shows that the

cost of messages between clients amortizes well as the size of the

data vector increases.

In the case of the server, Figures 7a and 7b show that the run-

ning time of the server increases significantly with the fraction of

dropouts. This is because, for each dropped clientu, the server must

remove that client’s pairwise masks pu,v from each other surviving

client v , which requires (n − d) PRG expansions, where d is the

number of dropped users. In contrast, each undropped user entails

only a single PRG expansion, to remove its self-mask. The high

cost of dealing with dropped users is also reflected in the server

running times in Figure 8.

In Figure 9, we show the results of running the protocol over a

Wide Area Network (WAN). The server and clients were run on

geographically seperated datacenters, with contention for CPU and

network. We give the standard deviations of the running times,

which reflects this contention, and occasional machine failures

(<1% of clients per execution). We observe that the clients have

a somewhat shorter runtime than the server: this is because the

Session E5: Privacy-Preserving Analytics CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1186

(a) Wall-clock running time for the server, as the number of clients
increases. The data vector size is fixed to 100K entries.

(b)Wall-clock running time for the server, as the size of the data vector
increases. The number of clients is fixed to 500.

Figure 7: Server Running Time and Data Transfer Costs. All wall-clock running times are for a single-threaded server imple-
mented in Java, and ignore communication latency. Plotted points represent averages over 10 end-to-end iterations. Error bars
are omitted where measured standard deviations are less than 1%.

Num. Clients Dropouts AdvertiseKeys ShareKeys MaskedInputColl. Unmasking Total

Client 500 0% 1 ms 154 ms 694 ms 1 ms 849 ms

Server 500 0% 1 ms 26 ms 723 ms 1268 ms 2018 ms

Server 500 10% 1 ms 29 ms 623 ms 61586 ms 62239 ms

Server 500 30% 1 ms 28 ms 514 ms 142847 ms 143389 ms

Client 1000 0% 1 ms 336 ms 1357 ms 5 ms 1699 ms

Server 1000 0% 6 ms 148 ms 1481 ms 3253 ms 4887 ms

Server 1000 10% 6 ms 143 ms 1406 ms 179320 ms 180875 ms

Server 1000 30% 8 ms 143 ms 1169 ms 412446 ms 413767 ms

Figure 8: CPU wall clock times per round. All wall-clock running times are for a single-threaded servers and clients imple-
mented in Java, and ignore communication latency. Each entry represents the average over 10 iterations. The data vector size
is fixed to 100K entries with 24 bit entries.

Num. Clients Total Runtime Per-Client StdDev Server Total Runtime StdDev Total Communication Per Client

500 13159 ms 6443 ms 14670 ms 6574 ms 0.95 MB

1000 23497 ms 6271 ms 27855 ms 6874 ms 1.15 MB

Figure 9: End-to-End running time for the protocol, executed over a wide-area-network. All running times are for a single-
threaded servers and clients running in geographically separated datacenters, and include computation time, network latency,
and time spent waiting for other participants. Each entry represents the average over 15 iterations, with iterations more than
3 standard deviations from the mean discarded. The data vector size is fixed to 100K entries with 62 bits per entry, and there
are no induced dropouts (beyond <1% that occurred naturally).

server has to run the additional (expensive) unmasking step after

all clients have completed.

8 DISCUSSION AND FUTUREWORK
Identifying and Recovering from Abuse The security proof in

Theorem 6.5 guarantees that when users’ inputs are learned by the

server, they are always in aggregate with the values of other users.

However, we do not protect against actively adversarial clients that

try to prevent the server from learning any sum at all. For example,

an attacker-controlled client could send malformed messages to

other clients, causing enough of them to abort that the protocol

fails before the server can compute its output. Ideally, we would

like such abuse by corrupt clients to be efficiently identifiable, and

the protocol to gracefully recover from it. However, the problem of

assigning blame for abuse is subtle, and often adds several rounds

to protocols. We leave this problem to future work.

Enforcing Well-formed Inputs Our protocol also does not

verify that users’ inputs are well-formed or within any particular

bounds, so actively adversarial users could send arbitrary values of

their choice, that can cause the output learned by the server to also

be ill-formed. For our specific machine learning application, we

will be able to detect obviously malformed outputs and can simply

Session E5: Privacy-Preserving Analytics CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1187

run the protocol again with a different set of clients. However, an

adversarial client may be able to supply “slightly” malformed input

values that are hard to detect, such as double its real values.

A possible solution is to use zero-knowledge proofs that the

client inputs are in the correct range. Unfortunately, even using the

best-known garbled circuit techniques [34], even one such proof

would be more costly than the entire protocol. We leave the problem

of guaranteeing well-formed inputs from the clients to future work.

Reducing Communication Further In the protocol we de-

scribe, all clients exchange pairwise masks with all other clients.

However, it may be sufficient to have the clients exchange masks

with only a subset of other clients, as long as these subsets of clients

do not form disjoint clusters. In fact, previous works (notably, Ács

et al. [3]) use this approach already. However, in our setting, this

requires extra care because the server facilitates the communica-

tion among clients, and an actively adversarial server can choose

dropouts based on its knowledge of which pairs of clients exchanged

masks with each other. We leave this improvement to future work.

9 RELATEDWORK
As noted in Section 2, we emphasize that our focus is on mobile

devices, where bandwidth is expensive, and dropouts are common,

and in our setting there is a single service provider. Consequently,

our main goal is to minimize communication while guaranteeing

robustness to dropouts. Computational cost is an important, but

secondary, concern. These constraints will motivate our discussion

of, and comparison with, existing works.

Works based on Multiple non-Colluding Servers: To over-

come the constraints of client devices, some previous work has

suggested that clients distribute their trust across multiple non-

colluding servers, and this has been deployed in real-world ap-

plications [10]. The recently presented Prio system of Gibbs and

Boneh [16] is, from the perspective of the client devices, non-

interactive, and the computation among the servers is very light-

weight. Prio also allows client inputs to be validated, something

our current system cannot do, by relying on multiple servers.

Araki et al. recently presented a generic three-party computation

protocol that achieves very high throughput [5]. This protocol could

also be used in a setting where non-colluding servers are available,

with the clients sending shares to each server that will be combined

online.

Works based on Generic Secure Multiparty Computation:
As noted in Section 1, there is a long line of work showing how

multiple parties can securely compute any function using generic

secure MPC [8, 18, 27, 40, 41]. These works generally fall into two

categories: those based on Yao’s garbled circuits, and those based

on homomorphic encryption or secret sharing. The protocols based

on Yao’s garbled circuits are better suited to 2- or 3-party secure

computation and do not directly extend to hundreds of users.

MPC protocols based on secret sharing, however, can extend

to hundreds of users. In addition, these protocols have become

relatively computationally efficient, and can be made robust against

dropouts. Boyle et al. studied generic MPC at such scale, relying on

a particular ORAM construction to help localize the computation

and avoid broadcasts [11]. Some works, notably [12], optimize these

generic techniques for the specific task of secure summation, and

have publicly available implementations.

However, theweakness of genericMPC protocols based on secret-

sharing is communication cost. In all such protocols, each user

sends a secret-share of its entire data vector to some subset of the

other users. To guarantee robustness, this subset of users must be

relatively large: robustness is essentially proportional to the size

of the subset. Additionally, each secret share is as long as the size

of the entire data vector. In our setting the constraints on total

communication make these approaches unworkable.

Works based on Dining Cryptographers Networks: Dining
cryptographers networks, or DC-nets, are a type of communication

network which provide anonymity by using pairwise blinding of

inputs [14, 28], similarly to our secure aggregation protocol. The

basic version of DC-nets, in which a single participant at a time

sends an anonymous message, can be viewed as the restricted case

of secure aggregation in which all users except for one have an

input of 0.

Recent research has examined increasing the efficiency of DC-

nets protocols and allowing them to operate in the presence of

active adversaries [17]. But previous DC-nets constructions share

the flaw that, if even one user aborts the protocol before sending

its message, the protocol must be restarted from scratch, which can

be very expensive [36].

Works based on Pairwise Additive Masking: Pairwise blind-
ing using additive stream ciphers has been explored in previous

work [3, 24, 31, 33], presenting different approaches to dealing with

client failures.

The work of Ács and Castelluccia [3], and the modification sug-

gested by [31], are the most closely related to our scheme, and have

an explicit recovery round to deal with failures. Their protocols

operate very similarly to ours: pairs of clients use Diffie-Hellman

key exchange to agree on pairwise masks, and send the server their

data vectors, summed with each of their pairwise masks and also

a “self-mask”. In the recovery step, the server tells the remaining

clients which other clients dropped out, and each remaining client

responds with the sum of their (uncancelled) pairwise masks with

the dropped users, added to their “self-mask”. The server subtracts

these "recovery" values from the masked vectors received earlier,

and correctly learns the sum of the undropped users’ data.

However, their recovery phase is brittle: if additional users drop

out during the recovery phase, the protocol cannot continue. Sim-

ply repeating the recovery round is not sufficient, since this has

the potential to leak the “self-masks” of the surviving users, which

in turn can leak their data vectors. Moreover, since the entire sum
of the masks is sent, this round requires almost as much commu-

nication as the rest of the protocol, making further client failures

during this step likely.

Schemes based on (Threshold) Homomorphic Encryption
Schemes based on threshold additively-homomorphic cryptosys-

tems (e.g. the Paillier cryptosystem [38, 47]) can handle client

dropouts, but are either computationally expensive or require ad-

ditional trust assumptions. For example, Paillier-based schemes

require an expensive-to-generate set of threshold decryption keys,

that must either be generated and distributed by a trusted third

party or generated online with an expensive protocol. Similarly the

Session E5: Privacy-Preserving Analytics CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1188

pairing-based scheme of Leontiadis et al. [39] calls for a trusted

dealer to set up the keys.

The schemes of Shi et al. [49] and Chan et al. [13] use an approach

similar to ours, but in the exponent in some group (the latter scheme

extends the former to provide robustness against client dropouts).

They also consider the need for differential privacy and give a

rigorous analysis of distributed noise generation. Unfortunately,

the size of the group elements is too large for our setting, and their

schemes also call for a trusted dealer.

Halevi, Lindell and Pinkas [32] present a protocol that uses ho-

momorphic encryption to securely compute the sum in just one

round of interaction between the server and each of the clients

(assuming a PKI is already in place). Their protocol has the advan-

tage that all parties do not need to be online simultaneously for

the protocol to execute. However, the protocol also requires the

communication to be carried out sequentially between the clients

and the server. More importantly for our setting, their protocol

does not deal with clients dropping out: all clients included in the

protocol must respond before the server can learn the decrypted

sum.

10 CONCLUSION
We have presented a practical protocol for securely aggregating

data while ensuring that clients’ inputs are only learned by the

server in aggregate. The overhead of our protocol is very low, and

it can tolerate large numbers of failing devices, making it ideal for

mobile applications. We require only one service provider, which

simplifies deployment. Our protocol has immediate applications

to real-world federated learning, and we expect to deploy a full

application in the near future.

REFERENCES
[1] Martín Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In

Proceedings of the 2016 ACM SIGSACConference on Computer and Communications
Security. ACM, 308–318.

[2] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. 2001. The oracle Diffie-

Hellman assumptions and an analysis of DHIES. In Cryptographers’ Track at the
RSA Conference. Springer, 143–158.

[3] Gergely Ács and Claude Castelluccia. 2011. I have a DREAM! (DiffeRentially pri-

vatE smArt Metering). In International Workshop on Information Hiding. Springer,
118–132.

[4] Stephen Advokat. 1987. Publication Of Bork’s Video Rentals Raises Privacy Issue.

Chicago Tribune (1987).
[5] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara.

2016. High-Throughput Semi-Honest Secure Three-Party Computation with an

Honest Majority. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’16). ACM, New York, NY, USA, 805–817.

https://doi.org/10.1145/2976749.2978331

[6] Michael Barbaro, Tom Zeller, and Saul Hansell. 2006. A face is exposed for AOL

searcher no. 4417749. New York Times 9, 2008 (2006).
[7] Mihir Bellare and Chanathip Namprempre. 2000. Authenticated encryption:

Relations among notions and analysis of the generic composition paradigm.

In International Conference on the Theory and Application of Cryptology and
Information Security. Springer, 531–545.

[8] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 1988. Completeness

theorems for non-cryptographic fault-tolerant distributed computation. In Pro-
ceedings of the twentieth annual ACM symposium on Theory of computing. ACM,

1–10.

[9] Manuel Blum and Silvio Micali. 1984. How to generate cryptographically strong

sequences of pseudorandom bits. SIAM journal on Computing 13, 4 (1984), 850–

864.

[10] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin Geisler, Thomas

Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt

Nielsen, Jakob Pagter, et al. 2009. Secure multiparty computation goes live. In

International Conference on Financial Cryptography and Data Security. Springer,
325–343.

[11] Elette Boyle, Kai-Min Chung, and Rafael Pass. 2015. Large-Scale Secure Computa-
tion: Multi-party Computation for (Parallel) RAM Programs. Springer Berlin Hei-

delberg, Berlin, Heidelberg, 742–762. https://doi.org/10.1007/978-3-662-48000-7_

36

[12] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas Dimitropoulos.

2010. SEPIA: Privacy-preserving aggregation of multi-domain network events

and statistics. Network 1 (2010), 101101.

[13] T-H Hubert Chan, Elaine Shi, and Dawn Song. 2012. Privacy-preserving stream

aggregation with fault tolerance. In International Conference on Financial Cryp-
tography and Data Security. Springer, 200–214.

[14] David Chaum. 1988. The dining cryptographers problem: unconditional sender

and recipient untraceability. Journal of Cryptology 1, 1 (1988), 65–75.

[15] Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. 2016. Revisiting

Distributed Synchronous SGD. In ICLR Workshop Track. https://arxiv.org/abs/
1604.00981

[16] Henry Corrigan-Gibbs and Dan Boneh. 2017. Prio: Private, Robust, and Scalable

Computation of Aggregate Statistics. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17). USENIX Association, Boston,

MA, 259–282. https://www.usenix.org/conference/nsdi17/technical-sessions/

presentation/corrigan-gibbs

[17] Henry Corrigan-Gibbs, David Isaac Wolinsky, and Bryan Ford. 2013. Proactively

Accountable Anonymous Messaging in Verdict.. In USENIX Security. 147–162.
[18] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. 2012. Multi-

party computation from somewhat homomorphic encryption. In Advances in
Cryptology–CRYPTO 2012. Springer, 643–662.

[19] Whitfield Diffie and Martin Hellman. 1976. New directions in cryptography.

IEEE transactions on Information Theory 22, 6 (1976), 644–654.

[20] John C Duchi, Michael I Jordan, and Martin J Wainwright. 2013. Local privacy

and statistical minimax rates. In Foundations of Computer Science (FOCS), 2013
IEEE 54th Annual Symposium on. IEEE, 429–438.

[21] Cynthia Dwork. 2006. Differential Privacy, In 33rd International Colloquium

on Automata, Languages and Programming, part II (ICALP 2006). 4052, 1–12.

https://www.microsoft.com/en-us/research/publication/differential-privacy/

[22] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and

Moni Naor. 2006. Our Data, Ourselves: Privacy Via Distributed Noise Generation..

In Eurocrypt, Vol. 4004. Springer, 486–503.
[23] Cynthia Dwork and Aaron Roth. 2014. The algorithmic foundations of differential

privacy. Foundations and Trends® in Theoretical Computer Science 9, 3–4 (2014),
211–407.

[24] Tariq Elahi, George Danezis, and Ian Goldberg. 2014. Privex: Private collection

of traffic statistics for anonymous communication networks. In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security.
ACM, 1068–1079.

[25] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. Rappor: Ran-

domized aggregatable privacy-preserving ordinal response. In Proceedings of the
2014 ACM SIGSAC conference on computer and communications security. ACM,

1054–1067.

[26] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model inversion

attacks that exploit confidence information and basic countermeasures. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 1322–1333.

[27] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to play any mental

game. In Proceedings of the nineteenth annual ACM symposium on Theory of
computing. ACM, 218–229.

[28] Philippe Golle and Ari Juels. 2004. Dining cryptographers revisited. In Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques.
Springer, 456–473.

[29] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning.

(2016). Book in preparation for MIT Press.

[30] Joshua Goodman, Gina Venolia, Keith Steury, and Chauncey Parker. 2002. Lan-

guage modeling for soft keyboards. In Proceedings of the 7th international confer-
ence on Intelligent user interfaces. ACM, 194–195.

[31] Slawomir Goryczka and Li Xiong. 2015. A comprehensive comparison of multi-

party secure additions with differential privacy. IEEE Transactions on Dependable
and Secure Computing (2015).

[32] Shai Halevi, Yehuda Lindell, and Benny Pinkas. 2011. Secure computation on

the web: Computing without simultaneous interaction. In Annual Cryptology
Conference. Springer, 132–150.

[33] Rob Jansen and Aaron Johnson. 2016. Safely Measuring Tor. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security. ACM,

1553–1567.

[34] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. 2013. Zero-knowledge

using garbled circuits: how to prove non-algebraic statements efficiently. In

Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security. ACM, 955–966.

Session E5: Privacy-Preserving Analytics CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1189

https://doi.org/10.1145/2976749.2978331
https://doi.org/10.1007/978-3-662-48000-7_36
https://doi.org/10.1007/978-3-662-48000-7_36
https://arxiv.org/abs/1604.00981
https://arxiv.org/abs/1604.00981
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs
https://www.microsoft.com/en-us/research/publication/differential-privacy/

[35] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,

Ananda Theertha Suresh, and Dave Bacon. 2016. Federated learning: Strategies

for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016).
[36] Young Hyun Kwon. 2015. Riffle: An efficient communication system with strong

anonymity. Ph.D. Dissertation. Massachusetts Institute of Technology.

[37] Vasileios Lampos, Andrew C Miller, Steve Crossan, and Christian Stefansen.

2015. Advances in nowcasting influenza-like illness rates using search query

logs. Scientific reports 5 (2015), 12760.
[38] Iraklis Leontiadis, Kaoutar Elkhiyaoui, and Refik Molva. 2014. Private and Dy-

namic Time-Series Data Aggregation with Trust Relaxation. Springer International
Publishing, Cham, 305–320. https://doi.org/10.1007/978-3-319-12280-9_20

[39] Iraklis Leontiadis, Kaoutar Elkhiyaoui, Melek Önen, and Refik Molva. 2015.

PUDA – Privacy and Unforgeability for Data Aggregation. Springer International
Publishing, Cham, 3–18. https://doi.org/10.1007/978-3-319-26823-1_1

[40] Yehuda Lindell, Eli Oxman, and Benny Pinkas. 2011. The IPS Compiler: Opti-

mizations, Variants and Concrete Efficiency. Advances in Cryptology–CRYPTO
2011 (2011), 259–276.

[41] Yehuda Lindell, Benny Pinkas, Nigel P Smart, and Avishay Yanai. 2015. Efficient

constant round multi-party computation combining BMR and SPDZ. In Annual
Cryptology Conference. Springer, 319–338.

[42] Kathryn Elizabeth McCabe. 2012. Just You and Me and Netflix Makes Three:

Implications for Allowing Frictionless Sharing of Personally Identifiable Infor-

mation under the Video Privacy Protection Act. J. Intell. Prop. L. 20 (2012),

413.

[43] H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, et al. 2016.

Communication-Efficient Learning of Deep Networks from Decentralized Data.

arXiv preprint arXiv:1602.05629 (2016).
[44] Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil Vadhan. 2009. Compu-

tational differential privacy. In Advances in Cryptology-CRYPTO 2009. Springer,
126–142.

[45] Arvind Narayanan and Vitaly Shmatikov. 2008. Robust de-anonymization of

large sparse datasets. In 2008 IEEE Symposium on Security and Privacy (sp 2008).
IEEE, 111–125.

[46] John Paparrizos, Ryen WWhite, and Eric Horvitz. 2016. Screening for pancreatic

adenocarcinoma using signals from web search logs: Feasibility study and results.

Journal of Oncology Practice 12, 8 (2016), 737–744.
[47] Vibhor Rastogi and Suman Nath. 2010. Differentially private aggregation of

distributed time-series with transformation and encryption. In Proceedings of
the 2010 ACM SIGMOD International Conference on Management of data. ACM,

735–746.

[48] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.

[49] Elaine Shi, HTH Chan, Eleanor Rieffel, Richard Chow, and Dawn Song. 2011.

Privacy-preserving aggregation of time-series data. In Annual Network & Dis-
tributed System Security Symposium (NDSS). Internet Society.

[50] Reza Shokri and Vitaly Shmatikov. 2015. Privacy-preserving deep learning. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 1310–1321.

[51] Reza Shokri, Marco Stronati, and Vitaly Shmatikov. 2016. Membership Inference

Attacks againstMachine LearningModels. arXiv preprint arXiv:1610.05820 (2016).
[52] Latanya Sweeney and Ji Su Yoo. 2015. De-anonymizing South Korean Resident

Registration Numbers Shared in Prescription Data. Technology Science (2015).
[53] Martin J Wainwright, Michael I Jordan, and John C Duchi. 2012. Privacy aware

learning. In Advances in Neural Information Processing Systems. 1430–1438.
[54] Andrew C Yao. 1982. Theory and application of trapdoor functions. In Foun-

dations of Computer Science, 1982. SFCS’08. 23rd Annual Symposium on. IEEE,
80–91.

A DIFFERENTIAL PRIVACY AND SECURE
AGGREGATION

While secure aggregation alone may suffice for some applications,

for other applications stronger guarantees may be needed, as indi-

cated by the failures of ad-hoc anonymization techniques [6, 45, 52],

and by the demonstrated capability to extract information about

individual training data from fully-trained models (which are es-

sentially aggregates) [26, 50, 51].

In such cases, secure aggregation composes well with differential
privacy [21]. This is particularly advantageous in the local privacy
setting [20], which offers provable guarantees for the protection of

individual training examples [1, 3] even when the data aggregator

is not assumed to be trusted [25, 53]. For example, when computing

averages, partial averages over subgroups of users may be com-

puted and privacy-preserving noise may be incorporated [22, 31]

before revealing the results to the data aggregator. Under some pri-

vatization schemes, for a fixed total number of users and for secure

aggregation subgroups of size n, the same amount of (computa-

tional [44]) differential privacy may be offered to each user while

reducing the standard deviation of the effective noise added to the

estimated average across all users by a factor of

√
n relative to pro-

viding local differential privacy without secure aggregation. Thus,

secure aggregation over just 1024-user subgroups holds the promise

of a 32× improvement in differentially private estimate precision.

We anticipate that these utility gains will be crucial as methods

for differentially private deep learning in the trusted-aggregator

setting [1] are adapted to support untrusted aggregators, though

a detailed study of the integration of differential privacy, secure

aggregation, and deep learning is beyond the scope of the current

work.

Suppose that each of U users has a vector xi with an ℓ2-norm

bounded by
∆

2
, such that the ℓ2-sensitivity of

∑
i xi is bounded by ∆.

For ϵ ∈ (0,1), we can achieve (ϵ ,δ)-differential privacy for the sum

via the Gaussianmechanism [23], by adding zero-meanmultivariate

Gaussian noise drawn from N (0,σ 2I), where σ =
∆

ϵ

√
2 ln(

1.25

δ).

In the local privacy setting, users distrust the aggregator, and so

before any user submits her value to the aggregator, she adds noise

zi ∼ N (0,σ 2I), achieving (ϵ ,δ)-differential privacy for her own data

in isolation. Summing contributions at the server yields

∑U
i=1

xi +∑U
i=1

zi . Observe that the mean of k normally distributed random

variables zi ∼ N (0,σ 2I) is z̄ ∼ N (0, σ
2

k I); it follows that the server

can form an unbiased estimator of x̄ from the user contributions as

x̂LDP =

1

U
*.
,

U∑
i=1

xi +

U∑
i=1

zi
+/
-
∼ N (x̄ ,

σ 2

U
I).

Now consider a setting wherein a trusted third party is available

that can aggregate and privatize batches of n user inputs; for sim-

plicity, assume thatU is a multiple ofn. The users deliver raw inputs

xi to the third party, who produces
U
n batch-sums, each with (ϵ ,δ)-

differential privacy for users in the batch, by adding zj ∼ N (0,σ 2I)

noise to the batch-sum j before releasing it. Summing the released

batch-sums at the server yields

∑U
i=1

xi +

∑U
n
j=1

zj . The server can

Session E5: Privacy-Preserving Analytics CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1190

https://doi.org/10.1007/978-3-319-12280-9_20
https://doi.org/10.1007/978-3-319-26823-1_1

once again form an unbiased estimator of x̄ as

x̂TTP =

1

U

*..
,

U∑
i=1

xi +

U
n∑
j=1

zj
+//
-
∼ N (x̄ ,

σ 2

nU
I).

Observe that the standard deviation of x̂TTP is a factor of
1√
n

smaller than that of x̂LDP . The secure aggregation protocol can be

used in lieu of a trusted third party while retaining these gains by

moving to a computational variant of differential privacy [44].

B NEURAL NETWORKS AND FEDERATED
LEARNING UPDATES

A neural network represents a function f (x ,Θ) = y mapping

an input x to an output y, where f is parameterized by a high-

dimensional vector Θ ∈ Rm . For modeling text message com-

position, x might encode the words entered so far and y a

probability distribution over the next word. A training exam-

ple is an observed pair ⟨x ,y⟩ and a training set is a collection

D =

{
⟨xi ,yi ⟩; i = 1, . . . ,m

}
. A loss is defined on a training set

Lf (D,Θ) =
1

|D |

∑
⟨xi ,yi ⟩∈D Lf (xi ,yi ,Θ), where Lf (x ,y,Θ) =

ℓ(y, f (x ,Θ)) for a loss function ℓ, e.g., ℓ(y,ŷ) = | |y − ŷ | |2.
Training a neural net consists of finding parameters Θ that

achieve small Lf (D,Θ), typically by iterating a variant of a mini-

batch stochastic gradient descent rule [15, 29]:

Θt+1 ← Θt − η∇Lf (Dt ,Θt
)

where Θt
are the parameters after iteration t , Dt ⊆ D is a ran-

domly selected subset of the training examples, and η is a learning

rate parameter.

In the Federated Learning setting, each user u ∈ U holds a

private set Du of training examples with D =

⋃
u ∈U Du . To run

stochastic gradient descent, for each update we select a random

subset of usersU t ⊆ U (in practice we might have say |U t |= 10
4

while |U |= 10
7
) and for each user u ∈ U t

we select a random

subset of that user’s data Dt
u ⊆ Du . We then form a (virtual)

minibatch Dt
=

⋃
u ∈U t Dt

u .

The minibatch loss gradient ∇Lf (Dt ,Θt
) can be rewritten as a

weighted average across users:

∇Lf (Dt ,Θt
) =

1

|Dt |

∑
u ∈U t

δtu

where δtu = |Dt
u |∇Lf (Dt

u ,Θt
). A user can thus share just the

concatenated vector

[
|Dt

u |
]
∥δtu with the server, from which the

server can compute the desired weighted average and a gradient

descent step:

Θt+1 ← Θt − η

∑
u ∈U t δtu∑
u ∈U t |Dt

u |

may be taken.

There is evidence that a trained neural network’s parameters

sometimes allow reconstruction of training examples [1, 26, 50, 51];

it is possible that the parameter updates be subject to similar attacks.

For example, if the input x is a one-hot vocabulary-length vector

encoding the most recently typed word, common neural network

architectures will contain at least one parameter θw in Θ for each

wordw such that

∂Lf
∂θw

is non-zero onlywhenx encodesw . Thus, the

set of recently typed words in Dt
u would be revealed by inspecting

the non-zero entries of δtu .

Session E5: Privacy-Preserving Analytics CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1191

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Organization

	2 Secure Aggregation for Federated Learning
	3 Cryptographic Primitives
	3.1 Secret Sharing
	3.2 Key Agreement
	3.3 Authenticated Encryption
	3.4 Pseudorandom Generator
	3.5 Signature Scheme
	3.6 Public Key Infrastructure

	4 Technical Intuition
	5 A Practical Secure Aggregation Protocol
	6 Security Analysis
	6.1 Honest but Curious Security
	6.2 Privacy against Active Adversaries
	6.3 Interpretation of Results

	7 Evaluation
	7.1 Performance Analysis of Client
	7.2 Performance Analysis of Server
	7.3 Prototype Performance

	8 Discussion and Future Work
	9 Related work
	10 Conclusion
	References
	A Differential Privacy and Secure Aggregation
	B Neural Networks and Federated Learning Updates

