
The ART of App Compartmentalization:
Compiler-based Library Privilege Separation on Stock Android

Jie Huang
CISPA, Saarland University
Saarland Informatics Campus
huang@cs.uni-saarland.de

Oliver Schranz
CISPA, Saarland University
Saarland Informatics Campus
schranz@cs.uni-saarland.de

Sven Bugiel
CISPA, Saarland University
Saarland Informatics Campus
bugiel@cs.uni-saarland.de

Michael Backes
CISPA, Saarland University
Saarland Informatics Campus
backes@cs.uni-saarland.de

ABSTRACT
Third-party libraries are commonly used by app developers for
alleviating the development efforts and for monetizing their apps.
On Android, the host app and its third-party libraries reside in
the same sandbox and share all privileges awarded to the host
app by the user, putting the users’ privacy at risk of intrusions by
third-party libraries. In this paper, we introduce a new privilege
separation approach for third-party libraries on stock Android.
Our solution partitions Android applications at compile-time into
isolated, privilege-separated compartments for the host app and the
included third-party libraries. A particular benefit of our approach is
that it leverages compiler-based instrumentation available on stock
Android versions and thus abstains from modification of the SDK,
the app bytecode, or the device firmware. A particular challenge
for separating libraries from their host apps is the reconstruction of
the communication channels and the preservation of visual fidelity
between the now separated app and its libraries. We solve this
challenge through new IPC-based protocols to synchronize layout
and lifecycle management between different sandboxes. Finally,
we demonstrate the efficiency and effectiveness of our solution
by applying it to real world apps from the Google Play Store that
contain advertisements.

CCS CONCEPTS
• Security and privacy → Mobile platform security;

KEYWORDS
Android Runtime, AppCompartmentalization, Third-party Libraries

1 INTRODUCTION
Third-party libraries are constituent parts of mobile apps and help
app developers to quickly deploy common utility functionality or

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’17, October 30-November 3, 2017, Dallas, TX, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00
https://doi.org/10.1145/3133956.3134064

leverage services, such as analytics or app monetization. However,
past experience has shown that those third-party libraries do not
only provide convenience [19, 26, 34, 35], but also bare risks for the
users’ privacy. On Android, particularly the fact that third-party
libraries and their host apps share the same sandbox has been iden-
tified as a means for nosy libraries to exploit their ambient authority
to tap into device-local resources, such as location tracking, phone
identifiers, or users’ private data, which can be of high interest to
external parties, like advertisement networks.

In light of those risks, the security community has recently pro-
posed different approaches to tame overly curious or even mali-
ciously acting libraries, where the focus clearly lies on privilege-
separating the notorious advertisement libraries. The proposed
solutions range from completely removing the library payload,
dedicated advertisement system services [27, 32] and system modi-
fications [31, 39] to application bytecode rewriting [25, 36, 40]. How-
ever, while those solutions greatly benefit the users’ privacy, they
do not entirely satisfy deployment restrictions from the end-users’
perspective. Unfortunately, application or system modifications
are unavoidable in the currently proposed solutions. Modifying
applications breaks the same origin policy of Android application
updates, since the original app has to be repackaged and resigned.
As a consequence this repackaged app version can no longer update
automatically. System modifications, on the other hand, are noto-
riously hard to distribute to end-user devices and distribution via
after-market ROMs is generally considered as a too high technical
hurdle for most layman end-users.

In this paper, we propose an alternative approach to privilege-
separation of untrusted advertisement libraries in Android apps by
using compiler-based instrumentation of apps. Since compilation is
an integrated, standardized part of app installation, compile-time
modifications do not require the target application to be repack-
aged and resigned, hence abstaining from breaking the application
signature. Moreover, Android’s dex2oat on-device compiler can
be operated entirely at the application layer and does not require
changes to the application framework or system image. As such,
compiler-based instrumentation forms a beneficial trade-off in the
deployment of a library separation solution. The foundation of our
approach to compiler-based library separation is a systematic study
of the ten most frequently used advertisement libraries to identify
the integration patterns between advertisement library and their
host apps. We discover that only a small number of such patterns

Session E2: Securing Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1037

https://doi.org/10.1145/3133956.3134064

exist and that they establish only a loose coupling between libraries
and host apps (e.g., callbacks, field access, or method invocations).
Based on those insights, we design and implement an extension for
the Android on-device dex2oat compiler suite, which at compile-
time identifies the code segments that integrate the advertisement
library into the app. It then splits the app at those integration points
into two distinct apps to be installed with a strong (process) se-
curity boundary in between and with being privileged separately.
The challenge of this approach is to reintegrate the now compart-
mentalized library with its host app, e.g., manage the event-driven
advertisement and application lifecycles or ensure visual fidelity
by correctly displaying advertisements. We solve this challenge in
our solution through a new IPC-based protocol for synchronizing
lifecycle events between the host app’s and library’s sandboxes as
well as for synchronizing the layout management between an over-
layed advertisement and the app’s user interface. More concretely,
we make the following contributions:

Study of advertisement library integration techniques. In order to
provide a solid foundation for our solution, we thoroughly analyzed
the ten most prevalent advertisement libraries in the Google Play
store that represent a large fraction of the market share of apps
that include advertisements. Beyond motivating the design of our
compartmentalization solution, we consider the results of our study
to be useful for the academic audience to facilitate independent
research on the topic.

Compiler-based Application Compartmentalization. We introduce
CompARTist, a compiler-based application compartmentalization
system that enforces privilege separation and fault isolation of ad-
vertisement libraries on Android. Our approach offers a deployment
alternative to existing solutions, since it does not require modifica-
tions of the firmware and does not break Android’s signature-based
same origin model. The primary challenge for our solution was the
reintegration of the library compartment with the host through
compile-time code instrumentations.

Outline. The remainder of this paper is organized as follows: In
Section 2, we provide background on the advertising ecosystem
on Android and present in Section 3 the findings of our study of
advertisement library integration techniques. Section 4 categorizes
and discusses prior related work. In Section 5, we introduce the
overall architecture of CompARTist. Furthermore, we discuss ro-
bustness, performance, and limitations as well as future directions
of our approach in Section 6 and conclude the paper in Section 7.

2 BACKGROUND
We briefly provide background information on the Android adver-
tisement ecosystem and on advertisement libraries in context of
Android’s sandboxing design.

2.1 Advertising Ecosystem
There are typically three participating parties in mobile advertis-
ing on Android: publishers, advertisers, and advertising networks.
Developers take the role of publishers who spare some part of
their apps’ user interface to show banners, interstitials, or other
advertisements to their users. Advertisers provide the actual adver-
tisements to be shown to customers. The advertising network is the

Publisher

User App Content
App Content

manifest.permission:
<host permission>READ_CONTACT
<ad permission>ACCESS_COARSE_LOCATION

ad permission

host permission

shared uid

UI monitoring

Advertising Netwrok

UI System
Res

Local
Files

Runtime
Files

Ads
SDK

XML
JSON
URL
...

AdvertiserAds
SDK

XML
JSON
URL
...

AdMob
Server

Banner Ad

Figure 1: Advertising Ecosystem

Services/FileSys

shared permissions
shared MAC/DAC

HOST

3rd-party libs

App

sandbox sandbox

p
ro

ce
ss b

o
u
n
d
a
ry

Figure 2: Default Android sandboxing

broker that controls the integration and delivery of advertisements
from advertisers to publishers. Figure 1 depicts a typical scenario
where the advertiser entrusts the network (here Google Admob)
with the delivery of advertisements. Conversely, app developers re-
ceive payments for displaying advertisements or generating clicks
through their users. To ease the task of integrating advertisements
into applications, the advertisement network usually provides the
app developers with dedicated SDKs, i.e., advertisement libraries.

2.2 Android App Sandboxing
Figure 2 gives an overview over Android’s default application sand-
boxing. Android’s user-based permission model mandates that ac-
cess to certain resources, e.g., location information or user contacts,
requires the declaration of specific permissions in the application
manifest. File system access, on the contrary, is enforced through
the UID-based sandboxing system of the underlying Linux ker-
nel where apps are assigned distinct UIDs and cannot access each
other’s files.

However, third-party libraries can undermine those security
mechanisms by exploiting their ambient authority. As depicted in
Figure 2, all app components share the same UID and are considered
the same security principal. This kind of coarse authorization gives
untrusted third-party libraries the opportunity to exploit all permis-
sions assigned to their host application, as well as access all its files.
While the introduction of a dynamic runtime permission system in
Android 6 allows users to revoke a predefined set of permissions
from applications, this is still enforced on the app level. Even the

Session E2: Securing Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1038

introduction of SELinux [33] in Android 4.3 only reduces the granu-
larity to the process level, while component-level granularity would
be required to separate library privileges. As a result, on default
Android, a privacy-invading third-party library [19, 22, 26, 34, 35]
can easily access and leak private resources or a vulnerable library
version unnecessarily extends its host app’s attack surface [28].

3 LIBRARY INTEGRATION TECHNIQUES
Statistical results from the freely available library detection tool Lib-
Scout [9, 20] indicate a low fragmentation of advertising libraries
among the top apps on Google Play. As shown in the first column
in Table 1, between the first and the tenth most popular advertise-
ment library the integration rate drops down significantly from
25.94% (Google Play Services Ads) to 3.11% (Amazon Ads). In partic-
ular, this means that analyzing the ten most popular advertisement
libraries allows us to cover a large fraction of all applications ship-
ping advertisement code. Since the focus of our study is on how a
host app can integrate a library, we checked the possible integration
patterns by analyzing the libraries’ official API documentations.
For those libraries that did not provide a full list of public APIs, we
use Oracle’s Java class file disassembler javap to extract the public
fields and methods from the library’s codebase. Table 1 summa-
rizes the results of our study on possible integration techniques of
advertisement libraries into host apps.

Method Invocation and Field Access are the two most common
integration techniques among all libraries. Typically, method invo-
cation and field access are used to exchange data between the host
and the library, e.g., to request loading of an advertisement or to
retrieve advertisement information.

We observed two possible techniques for deriving subclasses
from library code in order to integrate the library into the app: Class
Inheritance and Interface Implementation. Libraries use those tech-
niques to allow host apps to register callback components to react
to certain events, such as displaying or closing an advertisement. In
many cases, the callback methods are triggered with library-specific
objects as parameter values. This intertwines the library and host
tighter than, e.g., method invocations and field accesses, making the
library’s separation more challenging (as discussed in Section 5).

Furthermore, a small fraction of advertising libraries also propa-
gates information to their hosts by throwing customized Exceptions
that the host needs to catch and react to.

Layout Arrangement is an integration technique that allows ban-
ner advertisements to occupy part of the host app’s user interface.
To integrate this kind of non-full-screen views, app developers need
to make changes to their apps’ UI hierarchy. There are two ways
to integrate a banner view element: It can either be added in the
corresponding XML resource file for interface definition or it can
be instantiated and added as a new view element at runtime.

We found that all analyzed advertisement libraries require at
least one permission from their host app, INTERNET being the most
prevalent one. Further, dedicated advertisement components, e.g.
Activity, BroadcastReceiver, or ContentProvider need to be
registered for the advertisement library as well. All this requires
the host app developer to make changes to the host app’s manifest
file.

Based on our findings, we conclude that most advertisement
libraries share a common set of well-defined integration techniques,
which makes them amenable targets for efficiently separating them
at those integration points from their host apps.

4 RELATEDWORK
In this section, we discuss prior works for compartmentalization
of libraries as well as related works for blocking of advertisements
and general application-layer approaches to enhance Android’s app
sandboxing.

4.1 Library Compartmentalization
We first discuss closest related works for compartmentalizing app
components, in particular libraries. We categorize those existing
solutions based on their deployment strategy and compare them
for their respective advantages and drawbacks. Table 2 summarizes
the results of this discussion.

4.1.1 System-centric Solutions. System-centric solutions usually
ship a compartmentalization approach as part of the firmware (F3:
✗). This generally provides the advantage of establishing dedicated
system services/processes for advertising code (F1: ✓), running
monitoring code by-design with elevated privileges (F5: ✓), and
avoiding changes to the apps’ bytecode (F2: ✓). For instance, Ad-
Droid [27] and AFrame [39] both introduce new system services
that expose APIs for integrating advertisement libraries into appli-
cations. Trivially, a system-centric solution can always keep the
signature-based same origin model of apps intact by customizing
the signature verification process (e.g., whitelisting own changes).
While this allows for a robust privilege separation by running ad-
vertisement code in a separate process, it also requires developers to
adapt their apps to the system (F4: ✗). In contrast, AdSplit [32] takes
the developer out of the loop by automatically retrofitting applica-
tions to use their system (F4: ✓). FlexDroid [31] takes an even more
involved approach by modifying the operating system to introduce
so called inter-process stack inspection to allow per-component
permission enforcement and uses fault isolation techniques within
app processes to secure the stack-inspection code (F1: ✗). Addi-
tionally, it requires developers to include custom per-component
permission policies in their apps’ manifests (F4: ✗).

4.1.2 Application Layer Solutions. An alternative line of work
applies application rewriting and inlined reference monitoring
(IRM [21]) techniques, which abstain from modifying the firmware
(F3: ✓). Instead they modify the apps’ bytecode, which results in
repackaging and resigning of the modified code and, thus, in turn
breakingAndroid’s signature-based same originmodel (F2: ✗; F4:✓).
Since those techniques modify the code prior to installation, they
do not require higher privileges to operate (F5: ✓). Such rewriting
and IRM techniques have previously been used in different privacy-
enhancing solutions [13, 17, 18, 24, 29, 37] and the PEDAL [25]
and NativeGuard [36] approaches target specifically the privilege
separation of libraries. NativeGuard in particular focuses on mov-
ing native code libraries to a dedicated process and reconnecting
them to the host via inter-process communication (F1: ✓). PEDAL,
in contrast, runs host and library in the same process (F1: ✗), but
restricts the library through hooking into APIs that access sensitive

Session E2: Securing Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1039

Table 1: Techniques used to integrate advertising libraries with host application.

Ad Lib Share [9] Method
Invocation

Field
Access

Inherit
Class

Implement
Interface

Custom
Exception

Layout
Arrang.

Android
Manifest

Google Play Services Ads† 25.94% ✓ ✓ ✓ ✗ ✗ ✓ ✓

Flurry 17.85% ✓ ✓ ✓ ✓ ✗ ✓ ✓

Facebook Audience 12.11% ✓ ✓ ✓ ✓ ✗ ✓ ✓

Google Admob 9.30% ✓ ✓ ✗ ✓ ✗ ✓ ✓

InMobi 6.45% ✓ ✓ ✗ ✓ ✗ ✓ ✓

MoPub 6.13% ✓ ✓ ✓ ✓ ✓ ✓ ✓

Millennial Media 5.41% ✓ ✓ ✗ ✓ ✓ ✓ ✓

Tapjoy 4.29% ✓ ✓ ✗ ✓ ✗ ✗ ✓

AdColony 3.91% ✓ ✓ ✓ ✓ ✗ ✓ ✓

Amazon Ads 3.11% ✓ ✓ ✗ ✓ ✗ ✓ ✓

✓: technique used by library; ✗: technique not used by library
† The successor of AdMob and comprised of several advertising networks; we only focus on the basic package that includes Banner and Interstitial ads

Table 2: Comparison of existing (advertisement) library privilege separation approaches.

System-centric Application layer

Features FlexDroid [31] AdDroid [27] AdSplit [32] AFrame [39] NativeGuard [36] PEDAL [25] CompARTist

F1: Robust Privilege Separation ✗ ✓ ✓ ✓ ✓ ✗ ✓

F2: Preserves Same-Origin Model ✓ ✓ ✓ ✓ ✗ ✗ ✓

F3: No Firmware Modification ✗ ✗ ✗ ✗ ✓ ✓ ✓

F4: Developer Agnostic ✗ ✗ ✓ ✗ ✓ ✓ ✓

F5: No privilege escalation/App virt. ✓ ✓ ✓ ✓ ✓ ✓ ✗

✓: Solution provides feature; ✗: Solution does not provide feature

resources. Lastly, although not designed for privilege-separation of
third-party libraries but instead of WebView components by using
app rewriting techniques, the very recent WIREFrame [16] shares
some design ideas with our CompARTist (see later Section 5), e.g.,
in that it establishes an IPC-based channel between host app and
remote WebView for remote procedure calls, lifecycle management,
or restoring visual fidelity. In CompARTist we, in contrast, show
how such a channel can be established through a compiler-based
rewriting.

4.2 Advertisement Blocking
The growing popularity of mobile advertisements also gave rise to
a range of approaches that, in contrast to compartmentalization
and monitoring, follows a more extreme path and blocks advertise-
ments altogether. The downside of this approach is that it inhibits
the free distribution model by reducing the developers’ revenue
from displaying ads. Tools such as AdAway [2], AdGuard [5] and
AdblockPlus [4] utilize network-based filtering by either altering
the device’s hosts file or employing VPN-based content blocking.
In addition, AdblockBrowser [3] provides a fully-featured browser
with a deeply-integrated advertisement blocking functionality. In
contrast, APKLancet [38] is capable of pruning a range of third-
party libraries, in particular, advertisement libraries, by removing
the libs’ code from the app’s codebase. In-app ad-blocking solu-
tion [12] utilizes app virtualization to strip ads from apps.

CompARTist

Services/FileSys

AD

HOST

shared permissions
shared MAC/DAC

ORIGINAL APP

AD

HOST

HOST
SUPPORT

Services/FileSys

AD

host permissions
host MAC/DAC

ad permissions
ad MAC/DAC

LIB
SUPPORT

p
ro

ce
ss b

o
u
n
d

a
ry

HOST APP AD APP

Figure 3: System overview of CompARTist.

5 SYSTEM DESIGN
We present the design and implementation of CompARTist.

5.1 System Overview
The overall design of our CompARTist is depicted in Figure 3. The
goal of CompARTist is to privilege-separate advertisement libraries
from their host apps with a strong security boundary between li-
brary and host app. Since Android’s privileges are bound to UIDs,
we opted in our solution for splitting an ad-supported target app
into two different applications, each with a distinct UID. This sepa-
rates advertisement libraries into a separate process with separate
privileges through a distinct UID (F1: ✓). Since advertisement li-
braries are usually integrated into their host app (see Section 3), the

Session E2: Securing Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1040

AdHelper AdService

proxy proxy

stub stub

BINDER IPC

Ad Invocation APIs
Sync APIs Callback APIs

.identity:123

.classtype: adtype

.localId

.prim_object

wrapclass

primitives
String
...
WrapClass object

primitives
String
...
ad object

HOST
COMPONENTS

AD
COMPONENTS

HOST SIDE AD SIDE

Ad Object

Figure 4: Inter-application Communication Channel

primary challenge for such an approach is to re-integrated the host
app and library across process boundaries. While such separation
and re-integration can be achieved through firmware extensions or
application rewriting (see Section 4), we present a new trade-off in
the design space for Android security solutions by establishing such
separation and re-integration based on an extension of the dex2oat
on-device compiler. Operating entirely at application-level and at
compile-time, this approach abstains from firmware modifications
(F3: ✓), app repackaging and resigning (F2: ✓), and app developer
involvement (F4: ✓) by relying solely on the ability to load the app
code produced by an extended compiler backend1 (F5: ✗).

In the remainder of this section, we explain the design and imple-
mentation of the three main components of our solution: 1) a new
IPC-based channel between host app and library that makes the
previously locally integrated library remotely callable and, further,
allows to synchronize the runtime states between library and app
(Section 5.2); 2) an extension for the dex2oat compiler that inte-
grates host support for the new communication channel into the
host app and replaces the library through an opaque proxy for the
separated library (Section 5.3); and 3) a new advertisement service
app that encapsulates and privilege-separates the advertisement
libraries as well as displays the ads on screen (Section 5.4).

5.2 Inter-Application Communication Channel
Since the originally app-local procedure calls to advertisement libs
are not possible anymore in an isolated lib design, we need an inter-
application communication channel to deliver such calls remotely
across process boundaries. We take advantage of the Binder frame-
work [30], Android’s inter-process communication (IPC) mecha-
nism, to replace the original calls to the advertisement library with
remote procedure calls and transfer data, such as method param-
eters, between the host app and advertising service app. Figure 4
illustrates this channel and its components are explained in the
following.

5.2.1 Communication Protocol and APIs. The first general chal-
lenge for our solution is the handling of data marshalling. On An-
droid, any data that should be transferred via Binder IPC has to

1CompARTist requires access to a particular protected directory of an app to replace
the oat file that is loaded by the system. Escalated privilege, e.g., root access, is needed
merely to overwrite the original oat file.

HOST AdHelper

mAdView =
new AdView(host.context)

WrapClass(Host)

newInstanceService(
"AdView", wrapclass[])

storeObject(host.context)

wrapclass

AdService

getStoredObject(wrapclass)

WrapClass(Service)

ad.context

AD

AdView_constructor
.newInstance(ad.context)

adView

storeObject(adView)

wrapclass

getStoredObject(wrapclass)

adviewproxy

HashMap(id, adView)

.......

mAdView.setAdUnitId(adid)

storeObject(adid)

wrapclass

wrapclass =
getWrapClassFromObject(
adviewproxy)

invokeVirtualMethodService(
"AdView.setAdUnitId",
wrapclass, wrapclass[])

getStoredObject(wrapclass)

adView
adid

AdView_setAdUnitId
.invoke(adView, adid)

void

storeObject(void)

wrapclass

getStoredObject(wrapclass)

void

A2A1

A3
A4

A5

A6

A7

B1

B2

B4

B3

B5

B6

B7

Figure 5: Example protocol run for creating a new AdView in-
stance and calling method setAdUnitId(String) on this in-
stance.

be either a primitive type (e.g., integer), String or a complex type,
like a class, that implements the Parcelable interface to marshal
the complex type into primitive types for transmission. However,
library classes that were never intended to be sent via IPC, since
they are only used in local invocations, do not implement this in-
terface and are by-design not transmittable via Binder IPC. As a
consequence, our channel cannot be used to transmit them, because
it is unclear how to marshal and unmarshal those complex library
classes. Thus, in CompARTist, we build on a generic protocol for
remotely creating and operating on objects of library classes: those
objects are constructed and stored at the ad service side and ref-
erences to those objects are passed via IPC to the host app, which
can use those references to invoke methods or access fields on the
referenced objects. As generic, parcelable container data structure
to transmit method parameters, parameter type information, and
references to class instances in our protocol, we introduce a het-
erogeneous key-value store with corresponding serialization and
de-serialization logic called WrapClass.

We define three kinds of interfaces for our new inter-application
communication channel that host app and advertisement service
app can use to call each other via abovementionedWrapClass-based
protocol: advertisement invocation API, callback API, and synchro-
nization API. For each of those interface types, we automatically
create Stub and Proxy classes using Android’s AIDL2 feature. Those
classes make these communication channels more easily accessible
2https://developer.android.com/guide/components/aidl.html

Session E2: Securing Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1041

https://developer.android.com/guide/components/aidl.html

for the host app and ad service app, respectively. The full inter-
faces for each of those interface types are listed in Appendix A. A
particular benefit of these APIs is that they abstract from library
specific methods, thus avoiding the need to generate a tailored Stub
and Proxy for every available advertisement library and easing the
process of adding support for new libraries.

(1) Advertisement Invocation API. Generally speaking, there are
three ways for host components to communicate with the adver-
tisement library (see also Section 3): instance creation, field access,
and method invocation. For each of those three operations, the
operation type, the operation target, and any optional parameters
identify a concrete library invocation event. To better illustrate
this, consider the example library invocation in Figure 5 where
the host app creates a new AdView instance on which it then calls
the setAdUnitId(String) method. First (A1 in Figure 5), the host
requests to create an AdView object using the host’s context. This
request will be processed by AdHelper . AdHelper usesWrapClass to
store the host’s Context instance (A2). Since the Context is a non-
parcelable class, WrapClass will only store the type information
of this context parameter, i.e., class type. This WrapClass instance
forms the container of the original context instance and together
with the type information of the referenced target object (i.e., a
Context), it is passed to the remote advertisement app through our
generic IPC API as parameter of a newInstanceSerivce (A3) call
for "AdView". This API call instructs AdService to create a new local
object with the type "AdView" (1st argument) and constructor pa-
rameters stored in the WrapClass (2nd argument). Thus, AdService
first retrieves the stored object as the local ad.context parameter
from theWrapClass object (A4).With the target class type "AdView"
and constructor parameter, a new AdView object is created using
the AdService’s context (A5). Since the channel is agnostic towards
the exact library, AdService uses the Java reflection API to call the
constructor of a class specified by the target class type parameter.
This new object is stored locally in a HashMap, using a reference
ID as key. To reply to the host and return a reference to this new
AdView instance,AdService stores a reference (i.e., ID) together with
all type information in a new WrapClass that it returns to the host
(A6). The host creates a new proxy for this remote AdView object
using the received type information (A7). The WrapClass object
will also be stored in the proxy in order to establish the reference
from the proxy object to the remote object.

Using such proxies, the host can invoke methods on the refer-
enced remote objects. In Figure 5, the host invokes the setAdUnit-
Id(String adid) method on the proxy (B1). To this end, the host
stores the adid parameter in a WrapClass object and retrieves a
WrapClass to reference the remote AdView object (B2). Afterwards
(B3), it instructs the AdService to invoke the method "setAdUnitId"
of the class "AdView" through the invokeVirtualMethodService
IPC API call, where the first WrapClass parameter is the reference
to the existing AdView instance on which this method should be in-
voked and the secondWrapClass parameter is the argument list (i.e.,
wrapped adid). As before, AdService will again retrieve all parame-
ters from the received WrapClass arguments (B4) and, through the
reflection API, call the method on the referenced local AdView ob-
ject (B5). It then stores the return value, here void, in aWrapClass
instance (B6) and returns it to the host (B7).

(2) Synchronization API. Synchronization events only transfer
meta information that indicate the supposed lifecycle state and
layout of the remote advertisement. It also uses a WrapClass-based
protocol to transfer those information, similar to invocation of ad
libs explained above. The purpose of this API is the continuous syn-
chronization and smooth integration of the remote advertisement
view within the AdService app. More details about the operations
that AdService executes in addition to the ad invocations explained
above are provided in Section 5.4.

(3) Callback API. As mentioned earlier, integrating callbacks re-
quires a bidirectional communication flow between host and library.
To solve this problem, we implement a set of callback specific APIs
that the ad service app can use to trigger a callback method in the
host app. Thus, in this case the Proxy is located in the service app
and the Stub in the host app. In addition, we have to distinguish
two types of callbacks: interfaces and classes. In case the callback
is implemented as an extension of a library class, we additionally
have to make sure that the concrete implementation’s constructor
is not calling its parent’s constructor and hence invoking library
logic in the host. Therefore, we rewrite the constructor to suppress
the super call. For the interface case, this is not necessary since
there is no super constructor implementation. Otherwise, invoking
callback APIs follows the same WrapClass-based mechanism we
described earlier for the ad invocation API in order to invoke the
callback methods of the host.

5.2.2 Communication Endpoints. The communication protocol
is carried out between two communication entities: the host side
AdHelper within the host app and the AdService in the ad service
app, which in turn form the shim code between the host app com-
ponents and our IPC channel as well as between the ad library
components and the IPC channel, respectively (see Figure 4).

AdHelper serves as the encapsulation of our newly defined IPC
APIs on the host side. AdHelper takes care of wrapping and unwrap-
ping data from and toWrapClass and bridging the gap between our
communication channel and the host components. The interfaces
provided by AdHelper are used by our compiler-based rewriter
to re-integrate the remote library into the host app by replacing
local advertisement calls with calls to AdHelper (see following Sec-
tion 5.3). Similar to AdHelper on the host side, AdService forms the
shim between the IPC communication channel and the library’s
original API on the library side.

5.2.3 Service Connection Between Host App and Ad Service. In
our current model, AdHelper binds itself to the AdService to estab-
lish the communication channel. However, this channel has to be
established before any library code can be invoked by the host
app in order to ensure the correct functionality of the advertising
function of the host app. To solve this problem, we inject during
the compilation code into the host app that scans the host app’s
message queue at application start to obtain the Binder handle
of the AdService and then already initializes the connection to the
AdService in a very early stage of the app’s startup phase, before any
AdHelper function is invoked, thus ensuring any library invocation
finds a valid, established communication channel.

Session E2: Securing Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1042

5.3 Compiler-based App Rewriting
In order to utilize our remote isolated advertisement library, we
first need to retrofit host applications to actually use the newly
introduced communication channel instead of the packaged library.
Therefore, we need an application modification framework that can
replace invocations of the local library with those to our remote
version by redirecting all interaction through the new IPC-based
communication channel. Splitting host app and local library, and
afterwards reintegrating the host with the IPC channel requires two
essential steps: First, we need to identify the boundaries between
host and advertisement code. Second, we replace all those interac-
tions with our proxies and wrappers to restore the overall library
integration across process boundaries. This results in the host app
being agnostic towards the fact that it no longer interacts with
the packaged advertisement library but with our remote library
through an IPC channel.

5.3.1 Library Boundaries. The first step towards dissecting the
host application is understanding the exact interaction patterns
between app and library. While we discussed general integration
techniques in Section 3, we analyzed real-world applications to
identify actual code patterns to be able to transform them properly.
We distinguish between two cases: First, library objects or data are
introduced into the host application by either invoking a method,
accessing a field or instantiating a class from the advertisement
library. Second, library objects or data that have been introduced to
the host code earlier are passed around, characterized by method
returns, field access, type checks or type casts within the host
application. While only the first case depicts the boundary between
host and library, both cases need to be considered when rewriting
interactions to use ourAdHelper instead. Apart from code boundary,
special integration cases, such as manifest defined components and
customized exception, also need specific proxy support.

5.3.2 Library Substitution. The second step is to utilize the in-
formation about the concrete code integration patterns to resect the
library code and replace it with our components from our AdHelper .
Concretely, we utilize an app instrumentation framework that is
capable of merging AdHelper into the application and replace said
code parts with our alternatives. In the following, we will first intro-
duce the general structure of the host-side instrumentation part of
CompARTist and then deep-dive into the rewriting routines as they
pose one of the major challenges in establishing this new remote
library connection.

5.3.3 ARTist Instrumentation. In this work, we leverage the An-
droid app instrumentation capabilities of ARTist [11]3. The rewrit-
ing part of ARTist is built on top of the dex2oat compiler of the
Android Runtime (ART) introduced in Android 5 Lollipop and pro-
vides a modular framework to integrate own instrumentation solu-
tions. We use ARTist to modify interactions with the advertisement
library to interact with our AdHelper instead by utilizing two of
ARTist’s main features: introducing own instrumentation routines
through the Module framework and injecting our AdHelper into
the host app through the library injection capabilities.

3ARTist is open source software available under Apache 2.0 license
(https://github.com/Project-ARTist).

Module Framework. ARTist instrumentation is based on the con-
cept of so called Modules. A Module gets full access to the appli-
cation’s code, allowing for arbitrary modifications, e.g., adding or
removing instructions or changing them altogether, which will be
reflected in the code after compilation. Internally, ARTist utilizes
dex2oat’s optimization framework to disguiseModules as optimiza-
tions and let the existing infrastructure execute them. Concretely,
a Module is then provided with the code of all methods in the com-
piler’s internal intermediate representation (IR), one after another,
and can analyze and change it at will, as the compiler believes it is
executing a regular optimization algorithm. As it is designed to be
utilized for optimization algorithms, the compiler’s IR represents a
method as a control flow graph of heavily interlinked nodes that
closely resemble dex bytecode instructions 4.

We leverage this Module interface to implement the host side
of CompARTist. More precisely, we introduce a specialized Module
to take care of replacing the host-library interactions with corre-
sponding versions from our AdHelper .

Library Injection. While the Module framework is designed to
modify existing code, the injection capability allows to merge arbi-
trary own code libraries into a target application. ARTist automati-
cally takes care of making all APIs from AdHelper , as well as other
support components available to our module so that we can safely
redirect all interactions to this new target.

5.3.4 Module Design. While ARTist only provides the integra-
tion into the compiler, the main challenge is to design the Comp-
ARTist Module to seamlessly connect the host application to the
communication channel without harming the app’s original seman-
tics. Therefore, we will focus here on the design of our rewriting
Module.

Collecting Instrumentation Targets. From our analysis we know
the precise patterns that bootstrap interaction between host and
advertisement library. From this point, we need to find all IR code
nodes that operate on the obtained library data and modify them
accordingly. Since each node in the IR method graph is interlinked
with its usages and inputs already, we can apply forward slicing
from our starting points to find all code nodes that we need to
modify. Derived from our earlier analysis, we define three types
of start nodes: class loading, field access and method invocation.
As we are operating on method control flow graphs, we can find
all those occurrences on a per-method base. In the IR graph, those
starting points are marked by the following instructions:

(1) LoadClass starts a host-lib interaction by loading an adver-
tisement library class that is subsequentially used for, e.g.,
InvokeStaticOrDirect and NewInstance instructions.

(2) {Static,Instance}FieldGet obtains previously-saved ad-
vertisement library data from a field in a host component.

(3) InvokeVirtual receives previously-saved advertisement li-
brary data from an invoked host method.

Instrumentation Policies. Equipped with a list of entry nodes, we
follow the slice through the method graph and collect every in-
struction that interacts with the advertisement library. Afterwards,

4The ARTist paper [11] provides in-depth documentation on the intermediate
representation

Session E2: Securing Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1043

each single node is transformed to use our generic communication
channel instead. This is possible since the IR graph provides us with
all the structural information required to properly interact with
the AdHelper API: operation type, operation target and, optionally,
parameters. While we learn the operation type from the concrete
IR node (e.g., instance creation for NewInstance nodes), operation
target and parameters are immediately available in the graph, too,
and can therefore be provided to the AdHelper API.

Example Transformation. Figure 6 describes the code transforma-
tion applied to a code snippet that creates and loads a Google Play
Service Ads advertisement. The bottom left part of the Figure 6
depicts the intermediate representation of a small method that loads
an AdView. After loading the advertisement library class (instruc-
tion 5), the result of the LoadClass node is used to create a new
object (instruction 7 and 8). Afterwards, the newly created Builder
is used to build an AdRequest (instruction 9) that is consequently
used to load an advertisement (instruction 11).

Starting from the LoadClass node, forward slicing provides us
with all of the above mentioned nodes that interact with library
components. The right part of Figure 6 depicts the transformed
version of the advertisement loading code. First, instead of loading
and instantiating the original class, the instrumented version uses
the createObjectHelpermethod from ourAdHelper to trigger the
instantiation of said object in the remote library (instruction 22).
Second, the invokeMethodHelper allows to trigger the invoked
build method remotely (instruction 25), it only requires the name
(instruction 24) and class (instruction 21) strings, and the object
handle returned from createObjectHelper (instruction 22) to be
provided as arguments. Third, the loadAd is remotely invoked via
the invokeMethodHelper API (instruction 20).

5.4 Advertisement Service App
The advertisement service app encapsulates the ad library and forms
the sandbox for the lib. As a separate app, executed with a distinct
UID and in separate process, it effectively privilege-separates the
ad lib with a strong security boundary. Additionally, this app is
responsible for executing operations requested by the host app on
the library or for proxying callback methods from the library to the
host app (as explained in Section 5.2). Moreover, it is responsible
for displaying the advertisement on screen at the correct position
to preserve visual fidelity. To correctly display ads, the AdService
relies on lifecycle synchronization messages from the host app, e.g.,
show/hide an advertisement or rotate the advertisement.

5.4.1 Synchronizing lifecycles and preserving visual fidelity. It is
important to preserve the original look-and-feel of the ad library
(visual fidelity) by serving the advertisement as a part of the host
application’s user interface. In particular, sharing a screen with
the host application is very prevalent in advertisement libraries
and therefore needs careful consideration. Most advertisements are
directly integrated into the layouts of their host activities and there-
fore share their lifecycle, such as creation, pausing, and finishing
events. Thus, in CompARTist we need a mechanism to keep them
in sync between the host app and the separately executing ad lib in
the ad service app.

Proxy view and floating window. Instead of simply removing
the original advertisement View, e.g., AdView, from the layout of
the host, we replace it with a carefully crafted and empty proxy
View. In order to preserve the dimensions and placement of the
remaining GUI elements, this proxy View is located at the exact
same position as the original ad View and occupies the exactly
same space. Concurrently, ad service app creates a floating window
that is placed on top of the proxy View, again occupying the very
same position and space as the original ad View. It is important to
note that the floating window, even though originating from the ad
service app, can still be displayed while the host app is running in
the foreground. Hence, the floating window effectively covers the
same area on screen as the proxy View (see Figure 7). In our solution,
we use floating window type TYPE_TOAST to overlay the proxy
space with no additional permission needed. Whenever a lifecycle
callback from the Android system arrives at the proxy View, such
as rotation events between portrait and landscape orientation or
create/pause/resume/destroy events, the proxy View forwards them
via our inter-application communication channel and AdService to
the floating window. This allows the floating window to stay in sync
with the host app’s proxy View. As a result, while the advertisement
is safely compartmentalized in the service app, the user perceives
the advertisement as a part of the host app’s layout because the
occupied space and the lifecycles are synchronized.

The required layout information and lifecycle events are gathered
through two user interface callbacks: OnLayoutChangeListener
and ActivityLifecycleCallbacks. Since the proxy View is inte-
grated into the host layout and instantiated in the host app’s context,
it obtains the exact position the advertisement should have on-
screen through implementation of the OnLayoutChangeListener
and synchronizes this information with the remote side. By imple-
menting ActivityLifecycleCallbacks for the proxy View, it is
also straightforward to have synchronized displaying, hiding, and
finishing events in the remote advertisement View.

Advertisement view inflation. Usually, an advertisement view can
either be defined explicitly in a layout file and inflated automatically
by the system, or it can be instantiated manually at runtime. While
we can handle the runtime case with our rewriting framework,
supporting view replacement in case the advertisement instanti-
ation is done by the Android framework itself is more intricate.
Modifying the layout file directly is a possible solution, but it would
again require to repackage the app and break the app signature. To
support view substitution in both cases, at runtime and via layout
files while still maintaining the app signature, we use reflection
to additionally hook into the inflation mechanism at runtime and
inflate our proxy View instead of the original advertisement View.
Using this approach, the layout integration technique in Table 1
can be supported.

5.4.2 Multiplexing host apps. There are two approaches to achieve
advertisement pairing while multiplex host apps exist. One ad lib
app per app approach, where library runs in its own remote app,
can easily enforce per app privileges on the ad lib. This approach,
however, is not resource efficient. A centralized advertisement app,
which contains all advertisement libraries and serves all rewritten
host apps would be more efficient. Since our inter-application com-
munication channel between client and ad service app is built on

Session E2: Securing Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1044

3: InstanceFieldGet, args: (0)
5: LoadClass: Lcom/google/android/gms/ads/AdRequest$Builder
7: NewInstance: Lcom/google/android/gms/ads/AdRequest$Builder, args: (5)
8: InvokeStaticOrDirect: com.google.android.gms.ads.AdRequest$Builder.<init>, args: (7)
9: InvokeVirtual: com.google.android.gms.ads.AdRequest$Builder.build, args: (7)
11: InvokeVirtual: com.google.android.gms.ads.AdView.loadAd, args: (3, 9)
12: ReturnVoid

14: LoadClass: Lcom/hostsupport/localsupport/AdHelper, args: (4)
15: ClinitCheck, args: (14)
16: StaticFieldGet, args: (15)
17: NullCheck, args: (16)

3: InstanceFieldGet, args: (0)
21: LoadString: 'Lcom/google/android/gms/ads/AdRequest$Builder', args: (4)
22: InvokeVirtual: com.hostsupport.localsupport.AdHelper.createObjectHelper, args: (17, 21)
24: LoadString: 'build', args: (4)
25: InvokeVirtual: com.hostsupport.localsupport.AdHelper.invokeMethodHelper, args: (17, 21, 24, 22)
18: LoadString: 'Lcom/google/android/gms/ads/AdView', args: (4)
19: LoadString: 'loadAd'(4), uses: [20]
20: InvokeVirtual: com.hostsupport.localsupport.AdHelper.invokeMethodHelper, args: (17, 18, 19, 3, 25)
12: ReturnVoid

Before Instrumentation

After InstrumentationAdView adView;
....
public void showBanner() {
 AdRequest.Builder adRequestBuilder = new AdRequest.Builder();
 AdRequest adRequest = adRequestBuilder.build();
 adView.loadAd(adRequest);
}

Source Code

Figure 6: Intermediate representation of advertisement loading code before and after the CompARTist transformation.

The original view
of an app. Should
not be changed
after advertisement
removal.

Banner Ad Empty View

floating window

ORIGINAL APP AD APPHOST APP

Size
Position...

Banner Ad

Inter-application
Communication
Channel

The original view
of an app. Should
not be changed
after advertisement
removal.

Figure 7: Synchronization Management

top of service connections using Binder, the ad service can identify
the current caller app using Binder.getCallingUid() together
with information provided by the PackageManager. By using those
client-specific profiles, libraries can be shared between different
clients. However, this approach requires a strong domain isolation
within the single user-level advertisement app to privilege ad exe-
cutions according to their host apps(similar to AdDroid’s [27] ad
system service). Each approach has its own merits and both of them
can be adopted to CompARTist, since it’s just a matter of redirecting
the IPC calls.

To prevent amalicious host app from stealing ad revenue through
our CompARTist by continuously sending synchronization mes-
sages that instruct AdService to overlay any other app with the
malicious app’s advertisement, the ad service app must be able to
make synchronization events plausible. In our current solution, we
rely on the simple heuristic that only the host app that is on top of
the system’s Activity stack, i.e., in foreground on screen (excluding
the floating window overlay), is able to send valid synchronization
events, since it essentially instructs the AdService to be overlayed
or finish its own overlay, thus not affecting any other app. The
information about the current top Activity can be retrieved by third
party applications (like our ad service app) on older Android ver-
sions via the ActivityManager and on newer Android versions via
the UsageStatsManager.

5.5 Deployment
Our current design is mainly focused on the idea of providing
an application layer-only solution that completely abstains from
firmware modification while still providing robust isolation. This in

particular means that, as discussed in the beginning of Section 5, we
tailored our solution towards fulfilling most of the goals outlined
in Table 2. While our ad service app can be installed as a regular
application, the deployment of the host-side instrumentation part
of CompARTist is more intricate.

Requirements. As described in Section 5.3, our app rewriting so-
lution is based on theARTist framework that works on top of a mod-
ified compiler. However, with the above mentioned requirements
in mind, we have to abstain from replacing the system compiler
since this has several drawbacks: It requires modification of the
firmware and, in addition, every app installed will automatically
be instrumented by our approach. However, we want to allow for
selective recompilation of apps, i.e., the user should be able to pick
a subset of apps that she wants to have instrumented.

ArtistGui. We achieve this goal by utilizing the freely available
ArtistGui5 Android app that was created to provide a seamless way
to make use of ARTist Modules from the application layer without
requiring firmware modifications. It allows to ship the compiled
version of our app modification logic as a binary asset and makes
its instrumentation capabilities available through an easy-to-use
graphical interface. After applying our modification routines, the
instrumentation is completely transparent to the user as she can
still start the application from the launcher or other apps as usual.

Dependencies. While the chosen approach abstains from modify-
ing the Android operating system, it still requires at least elevated
privileges to be able to convince Android to execute instrumented
apps instead of the original ones. We will discuss this requirement
and possible solutions as well as alternative deployment strategies
for our rewriting part in Section 6.3.

6 DISCUSSION
We discuss our system in terms of the robustness of transformed
apps, the performance overhead our changes induce, and its lim-
itations. Further, we identify potential improvements and future
research directions.

5ArtistGui is open source software available under Apache 2.0 license
(https://github.com/Project-ARTist).

Session E2: Securing Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1045

6.1 Robustness Evaluation
The applicability of our approach largely depends on its capability
to neatly re-integrate the split application and advertisement code
across process and sandbox borders. In order to show the robustness
of our system, we conducted a large-scale evaluation on free apps
from the Google Play Store that contain advertisements by testing
them after applying our transformation.

6.1.1 Target Apps. We evaluate the robustness of our approach
against a list of applications that contain the Google Play Service
Ads library. As it dominates a large fraction of the mobile advertis-
ing market, evaluating with this library can indicate compatibility
with a major fraction of the market share of apps incorporating
advertisements. We started by creating a list of candidate apps from
Google Play Store. For generating this list, we utilized the freely
available LibScout project [9], which can tell apart the different
libraries used in apps. Starting off with top apps from the Google
Play Store that incorporate Google Play Service Ads, we filtered out
apps that did not meet the prerequisites for testing, e.g., could not
be downloaded, were published dysfunctional (i.e., crashed after
installation), or are multidex6.

6.1.2 Testing Setup. Scaling the evaluation of a dynamic ap-
proach to thousands of apps is only achievable through automation.
For pre-filtering, compiling, and testing all target apps on real
devices, we utilize monkey-troop7, an app testing framework de-
signed to evaluateARTist Modules. After filtering, apps are installed
on the device, transformed using CompARTist, and automatically
tested using Android’s monkey tool [1]. Experiments are conducted
on Google Pixel C devices running rooted stock Android 7 Nougat,
each having CompARTist and our ad service lib installed and con-
figured.

6.1.3 Automated UI Testing. Achieving meaningful code cover-
age by using automated UI testing tools is still an open problem. We
currently utilize Google’s monkey tool [1] to apply random touch
gestures to application activities. However, with this strategy the
monkey rarely makes it beyond the first few activities, let alone
those with input-validated fields. In addition, it can be prevented
to start other activities, but it often leaves the app by returning
to the homescreen or randomly changes quick settings. Still, we
use the monkey in our evaluation for the following reasons: First,
it provides reproducible executions since it provides us with the
seed for its random generator. This allows for applying the same
testing in the filter and test phase, respectively, to prevent mis-
matches there. Second, code coverage is not crucial here, since we
already execute a lot of code at application start (cf. Section 5.2)
and therefore starting the app to ensure it does not crash already
suffices in most cases. So triggering at least some functionality is
not considered mandatory, but a plus.

6.1.4 Results. We used the described testing infrastructure to
test 3861 apps on real devices, out of which 325 apps were removed
because they did not meet the above mentioned criteria for testing.
Figure 8 shows the results of our large-scale robustness evaluation.
6Our implementation does not support multidex apps (apps packaging more than one
dex file).
7monkey-troop is open source software available under Apache 2.0 license
(https://github.com/Project-ARTist).

3,861

3253,536

2793,257

8412,416

Candidate apps

Unsupported

Supported

Failed

Success

No ad shown

Ad shown

Figure 8: Breakdown of our robustness evaluation on appli-
cations using the Google Play Services Ads library.

Table 3: Performance evaluation results for the app compart-
mentalization transformation (averaged over 50 runs).

Baseline (ms) Transformed (ms)
Application Start 6.52 149.44
Banner 2025.35 2101.50
Interstitial (Loading) 1923.05 2084.44
Interstitial (Displaying) 117.13 125.40
Interstitial (Overall) 2040.18 2209.84

Out of 3536 apps, 3257 were checked, installed, tested, instrumented
and retested successfully, yielding a success rate of 92.11% that
indicates the robustness of our approach and the compatibility with
a large fraction of the current ad-using app landscape.

The topmost row provides some more insight into the drawbacks
of our current evaluation design. Although we successfully instru-
mented 92.11% of the tested applications, only 2416 out of 3257
(74.18%) reached a state that actually requested an advertisement
during testing. As discussed in Section 6.1.3, the monkey is a limiting
factor here since not all applications show advertisements in the
first few Activities that are within reach. However, please note
that even for those apps that did not request an advertisement, the
application successfully established a connection to the remote ad-
vertisement library, which already involves heavy rewriting. Hence
we expect a large fraction of those apps that did not reach ad re-
quest code during testing to nevertheless be compatible with our
approach.

6.2 Performance Evaluation
We analyze the performance of our design by comparing the modi-
fied version of the app, which connects to and interacts with the
remote advertisement library, to the unchanged version of the app
under test. We apply microbenchmarking to analyze the three sce-
narios we are particularly interested in: Application Start, Banner
Advertisments and Interstitial Advertisements.

6.2.1 Testing Setup. For our microbenchmarks, we again focus
on apps utilizing Google Play Services advertisements. In order
to measure the immediate impact of our modification, we create
a sample application that integrates banner and interstitial ads
according to Google’s developer manual [7]. At the same time, we
embed benchmarking code into the application itself, so that it can
measure the precise time required to invoke certain functionality.
With this approach, we can precisely compute the overhead by
repeatedly invoking the app in its regular and also transformed state,

Session E2: Securing Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1046

and compare the results. Experiments are conducted on Google
Nexus 6 device running rooted stock Android 7 Nougat.

6.2.2 Results. Table 3 shows the performance overhead mea-
sured during our tests for the different scenarios.

Application Start. As explained in Section 5.2, we need a connec-
tion to our remote advertisement service from the very beginning,
hence we block the application until we obtain the service handle.
More precisely, we wait for a fixed amount of 100 ms before scan-
ning the message queue to ensure the service Binder is available.
After establishing a connection, the host side spends some time on
client-specific initializations before returning, hence also blocking
the app. The combined one-time overhead of service Binder scan-
ning, IPC roundtrips, and client-specific initialization is depicted in
Table 3.

Banner Advertisements. Since loading and displaying banner ad-
vertisements is a synchronous task, the microbenchmark starts
when the advertisement is requested and ends as soon as the ban-
ner reports that it was successfully loaded, effectively providing
an end-to-end measurement. For banners, our modifications to the
application introduce an acceptable overhead of 3.62%.

Interstitial Advertisement. Due to the increased size of intersti-
tials and in contrast to, e.g., banner advertisements, the developer
documentation [6] suggests to preload the advertisement as early
as possible to ensure it is available when the app decides to display
it. The implications of this decoupling are twofold: First, only the
loading phase involves network communication. After the adver-
tisement has been downloaded, the displaying phase is completely
independent of the network and can therefore provide reliable test
results that are more likely to be reproducible. Second, if we as-
sume that the majority of application developers using the Google
Service Play Ads follow this advice, loading will be handled asyn-
chronously in the background and therefore small deviations will
not impede the user experience. Taking those implications into
account, we decided to separately measure and report microbench-
mark results for interstitial advertisement loading and displaying
time. As depicted in Table 3, the overall measurement is dominated
by the loading part. Since those results are heavily influenced by
the network operations involved, we take the measured overhead
of 7.74 % with a grain of salt. However, the measurements at least
indicate that our instrumentation does not have a major impact on
the loading performance. For the advertisement displaying bench-
mark, as expected, we can see a small overhead of 6.59 % added by
our approach due to additional computations and IPC roundtrips,
which is still within a range that is hardly perceivable by end users.

6.3 Deployment Alternatives
We discuss alternative deployment strategies in terms of their short-
comings and the specific use cases motivating them.

6.3.1 Host-side Alternatives. Depending on the concrete use
cases, CompARTist can be retrofitted to achieve a different subset
of the goals from Table 2. We present alternative implementation
strategies that replace or combine the host part of CompARTist with
existing work.

Instrumentation Frameworks. In terms of instrumentation capa-
bilities, ARTist is on par with long-established Android app in-
strumentation frameworks, most prominently bytecode rewriting
approaches. Hence, in case of the concrete use case does not require
preservation of application signatures, the host-side rewriting can
be fully implemented in one of the existing instrumentation frame-
works [13, 17, 18, 24, 29, 37] without affecting the communication
channel or library side.

Virtualization Techniques. Filesystem virtualization alone, as pro-
vided by existing virtualization solutions [10, 15], is not sufficient
when it comes to retrofitting the host app to utilize our commu-
nication channel, because it essentially treats the application as a
black box. While those solutions operate at application granularity
and therefore only see the app interacting with the middleware
or kernel, modifying applications to utilize our AdHelper needs
instruction-granularity so we can distinguish between host and
library code and rewrite interactions accordingly. Nevertheless, we
can combine virtualization techniques either directly with ARTist,
as suggested in the paper [11], or with one of the alternative ap-
proaches mentioned above, i.e., application rewriting frameworks.
By using systems such as Boxify [10] or NJAS [15], we can therefore
avoid the requirement for elevated privileges.

6.3.2 System-centric Deployment Strategy. Consider the use case
of a custom ROM that ships a modified Android operating system.
From the perspective of a ROM developer, application layer-only
focus and preserving app signatures are of no concern anymore
since CompARTist can be fully embedded into the firmware itself.
Replacing Android’s default dex2oat compiler with an ARTist ver-
sion that runs our CompARTist Module already suffices because
each application is automatically retrofitted to use the remote ver-
sion of its advertisement libraries. This alternative deployment path
might be beneficial for, e.g., security-focused ROMs employing a
hardened version of Android.

6.4 Limitations
We discuss those limitations inherent to our approach, as well as
those of our prototypical implementation.

6.4.1 Approach Limitations. As a result of design decisions dur-
ing the creation of our system, we have to deal with some limitations
that are inherent to our approach. While we created CompART-
ist with the idea in mind that we could compartmentalize arbitrary
Android libraries, it might be infeasible to apply our approach
to more strongly-coupled and deeply-integrated libraries such as,
e.g., Guava [8]. In contrast to advertisement libraries that have
a well-defined interface to the app and only communicate rarely,
reconnecting a deeply-integrated library through IPC might re-
quire proxying a large number of classes, consequently raising the
performance overhead significantly and possibly impairing user
experience. While this paper presents a new and robust approach
to sandbox libraries in general, it is more suited towards isolating
loosely-coupled components, such as advertisement code.

6.4.2 Implementation Limitations. Beside limitations in our pro-
totypical implementations, CompARTist also inherits implementa-
tion shortcomings of the ARTist system that is utilizes.

Session E2: Securing Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1047

ARTist. Even though dex2oat is available since Android 5 Lol-
lipop, ARTist utilizes the Android 6 version of the Optimizing
backend, hence only later versions (currently Marshmallow and
Nougat) can be supported. In particular, CompARTist is built on top
of the Android 7 version of ARTist. A further downside resulting
from utilizing ARTist is the requirement for root or in general ele-
vated privileges. However, as discussed above, depending on the
use case there are alternative deployment strategies with relaxed
requirements available.

CompARTist. One shortcoming of CompARTist itself is that it
works with a whitelist of supported advertisement libraries, hence
it cannot support new libraries out of the box. Even though our
current design allows for the fast creation of the required remote
advertisement library package, it still requires an expert to explicitly
add support for additional libraries.While the advertisementmarket
is not strongly fragmented at the time of this writing, new libraries
might pop up in the future and the above mentioned extra effort
can be done and shared by, e.g., the community. Another missing
feature is the support for multidex files, as already hinted at in the
evaluation section. Without proper support for apps with multiple
dex files, larger applications cannot be recompiled with our current
prototype.

6.5 Future Work
We outline possible improvements to our existing prototype and
indicate future research directions.

6.5.1 Improvements. We list some possible improvements to
CompARTist as well as for the evaluation pipeline.

Obfuscation Support. In order to replace existing intra-app ad
library calls with calls toAdHelper , ourARTist Module scans the tar-
get application’s code for the invocation of library methods. While
obfuscation hides the real method name (that could be obtained
from the library documentation), the structural information, such
as inheritance and package structures, are still available. Hence,
the robustness of our library call detection can be improved by
incorporating techniques such as those suggested in [9].

UI Testing Automation. While our evaluation infrastructure takes
measures to avoid a lot of common pitfalls in automated on-device
testing, one of its weaknesses is Android’s own monkey tool that
is utilized to exercise the UI of applications. Even though monkey
is sufficient to show the feasibility of our approach, the fact that
touch events break out of the boundary of the application under test
can result in undesired or even undefined behavior8. For example,
we observed the interruption of our experiments triggered by the
monkey disabling the usb debugging option in the developer setting
or even going as far as factory-resetting the testing device. Those
incidents clearly show that in order to provide a reliable test infras-
tructure, a superior UI exerciser tool is required. Possible candidates
for replacing monkey could be DroidMate [23] or Brahmastra [14].

Library Detection. LibScout [9] has shown the problem of iden-
tifying libraries inside their host applications to be solvable with
high probability. While we currently assume the advertisement
8In theory the monkey should be able to restrict touch events to activities of the app
under test. However, this feature seems to be flawed.

library in the host application to be known beforehand, extending
CompARTist with such a library detection would greatly improve
its usability.

Callee-side Rewriting. The current implementation of CompART-
ist scans for invocations of advertisement library APIs and replaces
themwith Proxymethods from our support library. However, caller-
side rewriting of method calls misses invocations triggered by re-
flection or from native code. Shifting our approach to callee-side
rewriting, i.e., rewriting the call sites of APIs by replacing their
logic with a redirection to our proxies, is a promising approach to
solve this problem.

6.5.2 Research Prospects. We do not only consider CompART-
ist to be a standalone tool but also a foundation for further inter-
esting research projects.

Library Hotpatching. The predominance of well-established ad-
vertisement networks, such as Google Play Service Ads, results
in lots of code duplication among applications since many ship
the same statically-linked advertisement library. At the same time,
updating the advertisement library is left as a task to the developers
that, as related work has shown [9], are statistically speaking likely
to delay those updates or in extreme cases omit them altogether.
By utilizing CompARTist, it is possible to enforce dynamic linking
of advertisement libraries by having exactly one adapted instance
of each library (version) running in a dedicated application con-
text and replacing statically-packaged libraries with references to
the remote one. While we show in this paper that CompARTist is
already capable of applying this transformation, a system-centric
repository of advertisement libraries needs to be created and main-
tained. Such a system allows for centralized, system-wide updates
of advertisement libraries that are completely transparent to the
app developer, effectively taking them out of the loop. While library
updates are not always backwards compatible, this system can be
utilized to apply, e.g., security patches that do not change the public
API.

Beyond Advertisements. We already discussed that compartmen-
talization of advertisement libraries is possible since they only use a
well-defined set of techniques to integrate into host apps, which is
not true for deeply wired libraries like Guava. However, there might
be other types of libraries in-between that could be susceptible to
our approach, including all the above mentioned opportunities such
as the possibility for system-centric updates and the compartmen-
talization of untrusted code.

7 CONCLUSION
This work introduces CompARTist, a compiler-based library com-
partmentalization solution to remedy the unsatisfactory situation
of privacy and security threats induced by advertisement libraries.
Our solution splits the original app into host and advertisement
library components and moves the library to a dedicated app to
create a strong security barrier. We apply inter-process communi-
cation and lifecycle synchronization to seamlessly reintegrate both
components without impairing user experience. Our evaluation
proves the robustness of our approach by successfully applying our
transformation routines to 3257 apps from Google Play Store. In

Session E2: Securing Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1048

conclusion, we introduce a new approach to library compartmen-
talization that abstains from system or app modifications.

ACKNOWLEDGMENT
This work was supported by the German Federal Ministry of Educa-
tion and Research (BMBF) via funding for the Center for IT-Security,
Privacy and Accountability (CISPA) (FKZ: 16KIS0345, 16KIS0656).

REFERENCES
[1] 2016. UI/Application Exerciser Monkey. https://developer.android.com/studio/

test/monkey.html. (2016). Accessed: 2017-08-28.
[2] 2017. AdAway. https://adaway.org/. (2017). Accessed: 2017-08-28.
[3] 2017. AdblockBrowser. https://adblockbrowser.org/. (2017). Accessed: 2017-08-28.
[4] 2017. AdblockPlus. https://adblockplus.org/. (2017). Accessed: 2017-08-28.
[5] 2017. AdGuard. https://adguard.com/en/welcome.html. (2017). Accessed: 2017-

08-28.
[6] 2017. Google Play Services: Interstitials. https://developers.google.com/

mobile-ads-sdk/docs/dfp/android/interstitial. (2017). Accessed: 2017-08-28.
[7] 2017. Google Play Services: Setup. https://developers.google.com/android/guides/

setup. (2017). Accessed: 2017-08-28.
[8] 2017. Guava. https://github.com/google/guava. (2017). Accessed: 2017-08-28.
[9] Michael Backes, Sven Bugiel, and Erik Derr. 2016. Reliable third-party library

detection in Android and its security applications. In CCS’16. ACM, 356–367.
[10] Michael Backes, Sven Bugiel, Christian Hammer, Oliver Schranz, and Philipp von

Styp-Rekowsky. 2015. Boxify: Full-fledged App Sandboxing for Stock Android.
In USENIX Security’15. 691–706.

[11] Michael Backes, Sven Bugiel, Oliver Schranz, Philipp von Styp-Rekowsky, and
Sebastian Weisgerber. 2017. ARTist: The Android runtime instrumentation and
security toolkit. In EuroS&P’17. IEEE, 481–495.

[12] Michael Backes, Sven Bugiel, Philipp von Styp-Rekowsky, and Marvin Wißfeld.
2017. Seamless In-App Ad Blocking on Stock Android. In MoST’17. IEEE.

[13] Michael Backes, Sebastian Gerling, Christian Hammer, Matteo Maffei, and Philipp
von Styp-Rekowsky. 2013. Appguard–enforcing user requirements on android
apps. In TACAS’13. Springer, 543–548.

[14] Ravi Bhoraskar, Seungyeop Han, Jinseong Jeon, Tanzirul Azim, Shuo Chen,
Jaeyeon Jung, Suman Nath, Rui Wang, and David Wetherall. 2014. Brahmas-
tra: Driving Apps to Test the Security of Third-Party Components. In USENIX
Security’14. 1021–1036.

[15] Antonio Bianchi, Yanick Fratantonio, Christopher Kruegel, and Giovanni Vigna.
2015. NJAS: Sandboxing unmodified applications in non-rooted devices running
stock android. In SPSM’15. ACM, 27–38.

[16] Drew Davidson, Yaohui Chen, Franklin George, Long Lu, and Somesh Jha. 2017.
Secure Integration of Web Content and Applications on Commodity Mobile
Operating Systems. In ASIACCS’17. ACM, 652–665.

[17] Benjamin Davis and Hao Chen. 2013. RetroSkeleton: retrofitting android apps.
In MobiSys’13. ACM, 181–192.

[18] Benjamin Davis, Ben Sanders, Armen Khodaverdian, and Hao Chen. 2012. I-
arm-droid: A rewriting framework for in-app reference monitors for android
applications. MoST’12 2012, 2 (2012), 17.

[19] Soteris Demetriou, Whitney Merrill, Wei Yang, Aston Zhang, and Carl A Gunter.
2016. Free for all! assessing user data exposure to advertising libraries on android.
NDSS’16 (2016).

[20] Erik Derr. 2017. https://projects.cispa.uni-saarland.de/derr/libscout. (2017). Ac-
cessed: 2017-08-28.

[21] Úlfar Erlingsson. 2003. The inlined reference monitor approach to security policy
enforcement. Technical Report. Cornell University.

[22] Michael C. Grace,Wu Zhou, Xuxian Jiang, and Ahmad-Reza Sadeghi. 2012. Unsafe
Exposure Analysis of Mobile In-app Advertisements. InWISEC’12. ACM, 101–
112.

[23] Konrad Jamrozik and Andreas Zeller. 2016. DroidMate: a robust and extensible
test generator for Android. In MOBILESoft’16. IEEE, 293–294.

[24] Jinseong Jeon, Kristopher K Micinski, Jeffrey A Vaughan, Ari Fogel, Nikhilesh
Reddy, Jeffrey S Foster, and Todd Millstein. 2012. Dr. Android and Mr. Hide:
fine-grained permissions in android applications. In SPSM’12. ACM, 3–14.

[25] Bin Liu, Bin Liu, Hongxia Jin, and Ramesh Govindan. 2015. Efficient privilege
de-escalation for ad libraries in mobile apps. In MobiSys’15. ACM, 89–103.

[26] Wei Meng, Ren Ding, Simon P Chung, Steven Han, and Wenke Lee. 2016. The
price of free: Privacy leakage in personalized mobile in-app ads. NDSS’16.

[27] Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and David Wagner. 2012. Ad-
droid: Privilege separation for applications and advertisers in android. In ASI-
ACCS’12. ACM, 71–72.

[28] Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi, Christopher Kruegel,
and Giovanni Vigna. 2014. Execute This! Analyzing Unsafe and Malicious Dy-
namic Code Loading in Android Applications. In NDSS’14, Vol. 14. 23–26.

[29] Siegfried Rasthofer, Steven Arzt, Enrico Lovat, and Eric Bodden. 2014. Droidforce:
Enforcing complex, data-centric, system-wide policies in android. In ARES’14.
IEEE, 40–49.

[30] Thorsten Schreiber. 2011. Android binder. http://www.nds.rub.de/media/
attachments/files/2012/03/binder.pdf. (2011).

[31] Jaebaek Seo, Daehyeok Kim, Donghyun Cho, Taesoo Kim, and Insik Shin. 2016.
FlexDroid: Enforcing in-app privilege separation in android. In NDSS’16.

[32] Shashi Shekhar, Michael Dietz, and Dan S Wallach. 2012. AdSplit: Separating
Smartphone Advertising from Applications. In USENIX Security’12, Vol. 2012.

[33] Stephen Smalley and Robert Craig. 2013. Security Enhanced (SE) Android: Bring-
ing Flexible MAC to Android. In NDSS’13, Vol. 310. 20–38.

[34] Sooel Son, Daehyeok Kim, and Vitaly Shmatikov. 2016. What mobile ads know
about mobile users. In NDSS’16.

[35] Ryan Stevens, Clint Gibler, Jon Crussell, Jeremy Erickson, and Hao Chen. 2012.
Investigating user privacy in android ad libraries. In MoST’12, Vol. 10.

[36] Mengtao Sun and Gang Tan. 2014. Nativeguard: Protecting android applications
from third-party native libraries. InWiSec’14. ACM, 165–176.

[37] Rubin Xu, Hassen Saïdi, and Ross J Anderson. 2012. Aurasium: practical policy
enforcement for android applications. In USENIX Security’12, Vol. 2012.

[38] Wenbo Yang, Juanru Li, Yuanyuan Zhang, Yong Li, Junliang Shu, and Dawu
Gu. 2014. APKLancet: tumor payload diagnosis and purification for android
applications. In ASIACCS’14. ACM, 483–494.

[39] Xiao Zhang, Amit Ahlawat, and Wenliang Du. 2013. Aframe: Isolating advertise-
ments from mobile applications in android. In ACSAC’13. ACM, 9–18.

[40] Yajin Zhou, Kunal Patel, Lei Wu, Zhi Wang, and Xuxian Jiang. 2015. Hybrid
user-level sandboxing of third-party android apps. In ASIACCS’15. ACM, 19–30.

APPENDIX
A APIS OF OUR COMMUNICATION

CHANNEL
Listings of our communication channel API, noted in AIDL.

Listing 1: Callback API
1 void invokeListenerCallbackHelper(int objectId ,

String method);
2 void invokeListenerCallbackHelper_1(int objectId ,

String method , in WrapClass param);
3 void invokeListenerCallbackHelper_2(int objectId ,

String method , in WrapClass param_1 , in
WrapClass param_2);

4 void invokeListenerCallbackHelper_3(int objectId ,
String method , in WrapClass param_1 , in
WrapClass param_2 , in WrapClass param_3);

5 void invokeListenerCallbackHelper_4(int objectId ,
String method , in WrapClass param_1 , in
WrapClass param_2 , in WrapClass param_3 , in
WrapClass param_4);

Listing 2: Advertisement Invocation API
1 WrapClass getStaticFieldService(String ctype , String

field);
2 WrapClass invokeStaticMethodService_2(String ctype ,

String method ,in WrapClass [] params);
3 WrapClass invokeStaticMethodService(String ctype ,

String method);
4 WrapClass invokeVirtualMethodService_2(String ctype ,

String method , in WrapClass object , in
WrapClass [] params);

5 WrapClass invokeVirtualMethodService(String ctype ,
String method , in WrapClass object);

6 WrapClass newInstanceService_2(String ctype , in
WrapClass [] params);

7 WrapClass newInstanceService(String ctype);

Listing 3: Lifecycle API
1 void removeWindow(int viewId , boolean destroy);
2 void createWindow(int viewId , in Rect rect);
3 void updateWindow(int viewId , in Rect rect);

Session E2: Securing Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1049

https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html
https://adaway.org/
https://adblockbrowser.org/
https://adblockplus.org/
https://adguard.com/en/welcome.html
https://developers.google.com/mobile-ads-sdk/docs/dfp/android/interstitial
https://developers.google.com/mobile-ads-sdk/docs/dfp/android/interstitial
https://developers.google.com/android/guides/setup
https://developers.google.com/android/guides/setup
https://github.com/google/guava
https://projects.cispa.uni-saarland.de/derr/libscout
http://www.nds.rub.de/media/attachments/files/2012/03/binder.pdf
http://www.nds.rub.de/media/attachments/files/2012/03/binder.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Advertising Ecosystem
	2.2 Android App Sandboxing

	3 Library Integration Techniques
	4 Related Work
	4.1 Library Compartmentalization
	4.2 Advertisement Blocking

	5 System Design
	5.1 System Overview
	5.2 Inter-Application Communication Channel
	5.3 Compiler-based App Rewriting
	5.4 Advertisement Service App
	5.5 Deployment

	6 Discussion
	6.1 Robustness Evaluation
	6.2 Performance Evaluation
	6.3 Deployment Alternatives
	6.4 Limitations
	6.5 Future Work

	7 Conclusion
	References
	A APIs of our communication channel

